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Abstract

This paper introduces a novel 3D interest point detector and feature representation
for describing image sequences. The approach considers image sequences as spatio-
temporal volumes and detects Maximally Stable Volumes (MSVs) in efficiently calcu-
lated optical flow fields. This provides a set of binary optical flow volumes highlighting
the dominant motions in the sequences. 3D interest points are sampled on the surface of
the volumes which balance well between density and informativeness. The binary opti-
cal flow volumes are used as feature representation in a 3D shape context descriptor. A
standard bag-of-words approach then allows building discriminant optical flow volume
signatures for predicting class labels of previously unseen image sequences by machine
learning algorithms. We evaluate the proposed method for the task of action recognition
on the well-known Weizmann dataset, and show that we outperform recently proposed
state-of-the-art 3D interest point detection and description methods.

1 Introduction

3D interest point detectors and descriptors for image sequences have recently been in the
scope of several researchers as they constitute the basis for different computer vision ap-
plications like tracking or recognizing actions and events. The underlying idea of most ap-
proaches is to view videos as spatio-temporal volumes and therefore many proposed methods
simply extend ideas successfully applied in the 2D image domain to the third dimension.

Calculation of 3D interest point descriptors consists of three different steps: definition of
the underlying feature representation, detection of 3D interest points and description of the
spatio-temporal volumes, which surround the interest points.

The most important part of recognizing image sequences based on 3D interest point
descriptors is the choice of the underlying feature representation. Different features were
used ranging from simple pixel intensity values [2], over common gradient magnitudes and
orientations [8, 22] to optical flow based features as used in [4, 10]. Especially optical flow
has recently proven to be a strong feature for the task of action recognition [10]. Highly
accurate dense optical flow can now be calculated in real-time [26].
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As outlined by [2], for interest point detection in spatio-temporal volumes, direct 3D
counterparts to commonly used 2D interest point detectors are inadequate. Thus, different
alternatives were proposed. The simplest approach is to sample points on a fixed grid or
even randomly distributed which achieves good results if enough points are sampled. In [9]
significant intensity variations in both spatial and temporal direction are detected in the style
of Harris corner detection. In [2] a detector was proposed based on the response of Gabor
filters applied to the spatial and the temporal domain. Recently, saliency analysis was utilized
for detecting more evenly distributed 3D interest points [20].

For describing the space-time volumes around the detected interest points mainly straight-
forward extensions of 2D concepts were proposed. For example the well-known SIFT and
the Histogram of Gradients (HoG) descriptors were directly converted to their 3D counter-
parts in [22] and [8] and showed impressive performance for recognizing image sequences.

Once 3D interest points are detected and the surrounding spatio-temporal volume is de-
scribed in terms of fixed-size feature vectors, any standard image recognition method can be
applied. The main paradigm in this field is the well-known bag-of-words model [23], where
descriptors are clustered into prototypes and each image (video) is represented by its signa-
ture of the occurring prototypes. Then common machine learning algorithms like support
vector machines are used to classify new videos, for example to recognize specific actions
or events in the sequence.

We also follow the trend to view videos as spatio-temporal volumes and to use 3D inter-
est point descriptors in a bag-of-words model for recognizing image sequences. Our main
focus lies on introducing an interest point detection and description method based on a novel
underlying feature representation. Our representation analyzes the magnitudes of the es-
timated optical flow fields in the sequences. Instead of directly using the flow as feature
representation as done in [4, 10], we first detect connected binary volumes in the optical
flow magnitude fields of the sequence. This binary representation then allows sampling 3D
interest points on the surface of the volume and using the binary optical flow volumes as
underlying feature representation. Please note that unlike other methods we solely exploit
the optical flow as feature and do not use any appearance information in our method but
nevertheless achieve state-of-the-art performance for the task of action recognition as it is
shown in the experimental section. Furthermore, since all steps of our method have shown
to be real-time capable by themselves, the proposed approach potentially allows real-time
image sequence recognition.

The outline of the paper is as follows. Section 2 introduces our novel feature representa-
tion for 3D interest point detection and description and summarizes the bag-of-words model
which is used to classify new image sequences. Section 3 provides an experimental evalua-
tion of the proposed method for the task of action recognition. We compare to state-of-the-art
methods and demonstrate improved performance despite the simplicity and high efficiency
of the method.

2 Image sequence description by bag of flow volumes

Our method for recognizing image sequences consists of two steps. Section 2.1 introduces
our novel optical flow based feature representation and 3D interest point detection and de-
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Figure 1: Illustration of 3D image sequence description process: First, the optical flow in
the image sequence is calculated (top row). Second, Maximally Stable Volumes (MSVs) are
detected within the flow fields and used as feature representation (on right). Third, on the
surface of these stable motion volumes, 3D interest points are detected (blue dots on right)
and described by a 3D shape context method.

scription method, which provides a set of fixed-size feature vectors for the detected 3D inter-
est points in the sequence. The second part of our method follows a standard bag-of-words
model which describes the image sequences in terms of optical flow volume signatures and
is summarized in Section 2.2.

2.1 3D interest point detection and description

The main contribution of this paper is a novel feature representation based on analysis
of the optical flow in a sequence, which is used for strong 3D interest point detection and
additionally constitutes the basis for calculating a discriminant spatio-temporal descriptor.

Our method for 3D interest point detection and description mainly consists of three sub-
sequent steps. First, we estimate the optical flow in the image sequence. Second, we apply
the Maximally Stable Volume (MSV) detector to identify stable optical flow volumes, and
finally we describe sampled interest points located on the volume surfaces with a 3D de-
scriptor analyzing the local shape of the volumes.

The first step is the estimation of the optical flow within the image sequence. We apply a
recently proposed TV-L; based variational method [26] which is one of the best performing
algorithms on the well-known Middlebury dataset. For further analysis we only consider the
pixel-wise magnitude fields neglecting the orientation information.

The next step of our method is to detect stable connected volumes within the calculated
optical flow magnitude fields, which is done by Maximally Stable Volume (MSV) detection.
MSVs were proposed by Donoser and Bischof [3] for the task of 3D segmentation. It is an
extension of the Maximally Stable Extremal Region (MSER) interest region detector from
Matas et al. [14] to the third dimension. MSER detection returns a set of connected regions
within a gray-scale image which are defined by an extremal property of the intensity func-
tion. MSERs have properties that form their superior performance as stable local detector.
MSERs are invariant to affine intensity transformations and covariant to adjacency preserv-
ing (continuous) transformations on the image domain. Furthermore, they are detected at
different scales and since no smoothing is involved, both very fine and very large structures
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are detected. Finally, they have shown to be the interest region detector with the lowest
algorithmic complexity and therefore can be used in real-time frameworks.

Maximally Stable Volume (MSV) detection is a straight-forward extension of the MSER
approach to the third dimension. Thus instead of detecting maximally stable regions in 2D,
MSYV detection returns the maximally stable volumes in 3D datasets. Analogue to MSERs,
high stability is defined as homogeneous intensity distribution inside the volume and high
intensity difference to its boundary. The detected MSVs possess the same desired properties
as single image MSERs and in addition allow handling topological changes of regions in the
image sequence.

The detection of MSVs within a 3D dataset is done by the same algorithm as for MSERs.
It is based on interpreting the input as connected, weighted graph, where voxels are the nodes
and edges are defined by for example the 6, 18 or 26 neighborhood. Then a data-structure
denoted as component tree is built, which analyzes how binary threshold results of the vol-
ume change during adapting the threshold value. Each node of the component tree contains
a volume and the tree structure allows calculating a stability value for every node analyzing
how much the size of the volume changes while moving the component tree upwards. The
most stable volumes, i. e. the nodes with the highest stability values, are returned as detection
result. The calculation of the component tree and the analysis of the most stable volumes
can be done in an efficient manner, for example Nistér and Stewénius [17] recently showed
a linear time algorithm for detection of MSERs, which can be easily extended to the third
dimension.

We apply the MSV detector on the calculated optical flow magnitude fields interpreting
the image sequence as a 3D dataset. The final output is a set of stable connected flow volumes
for each image sequence as it is illustrated in Figure 2 for videos of the Weizmann action
recognition dataset [1].

As next step we randomly sample 3D interest points located at the surface of the de-
tected volumes, therefore focusing on areas where the optical flow magnitude changes in the
sequence. Each interest point is described by a 3D descriptor, where any of the versatile
methods available can be used. We use a 3D shape context descriptor, which allows de-
scribing the local shape of the binary volumes. The 3D shape context as proposed by [6] is
a straight-forward extension of the common 2D shape context by log-polar binning of the
surface points in the spatio-temporal neighborhood.

It is important to note, that in contrast to almost all other 3D interest point description
methods we do not use the appearance or gray scale images, we instead propose to use the
detected binary Maximally Stable Volumes (MSV) as underlying representation. Therefore,
we mainly analyze the local surface shape of the optical flow volumes. As it is shown
in the experiments in Section 3, using the binary optical flow volumes as representation
significantly improves recognition results.

2.2 Bag of optical flow volumes

We now have a set of fixed-size 3D interest point description vectors for every input video
sequence. This allows applying a standard bag-of-words model for recognizing and distin-
guishing different image sequences. The bag-of-words model for recognizing videos has
been used several times before as for example by [5, 11, 21].

The underlying concept of a bag-of-words model is to represent images (videos) by
counting the number of occurrences of descriptor prototypes, so-called visual words. Visual
words are identified by clustering the set of all training descriptors to identify their shared
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Figure 2: Illustration of the Maximally Stable Volumes (MSV) extracted from the optical
flow fields of the action sequences from the Weizmann dataset. Each row contains the stable
flow volumes calculated from the image sequences of the nine subjects. The ten columns
show the corresponding ten different actions. Note how each flow volume has a unique
volume surface, even the minor differences between sideways galloping and skipping are
visible when looking at the motion of the legs and feet.

properties. Histograms of the visual word occurrences define the basic building blocks for
comprising and identifying images (videos). For efficiency reasons we use the properties
of a hierarchical k-means clustering approach proposed by Nistér and Stewénius [16]. The
idea is to build a tree structure by repeated clustering of the descriptors to get various levels
of abstraction. This property is used to quickly discard a large number of descriptors when
searching for the best match. At each level only the cluster with the most similar visual word
is further considered. This creates a significant speedup and has been shown to work for one
million images at a query time of less than one second [16].

In this work we cluster the description vectors of the detected 3D interest points into
meaningful visual words representing local optical flow volume prototypes. By counting the
number of visual word occurrences in the image sequence, we build a discriminative signa-
ture which can be used for classifying previously unseen sequences. Figure 3 illustrates the
coherency of the visual words obtained for the Weizmann dataset. It shows a set of selected
clusters and their associated optical flow volumes surrounding the corresponding interest
points. The low intra-class variance demonstrates the power of our approach as similar flow
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Figure 3: Illustration of obtained visual word clusters. Each of the colored clusters (here a
subset of the overall 243 clusters) shows examples of parts of the 3D optical flow volumes
as clustered together by the hierarchical k-means method. These visual words are used for
identifying the characteristic motion parts of each image sequence.

volumes are clustered together to identify characteristic motions in the sequences.

In the final stage a machine learning algorithm is used to train and classify previously un-
seen visual word signatures. Usually, a support vector machine is used for this step which is a
binary classifier. Therefore, to be able to tackle multi-class problems these approaches have
to be extended by common techniques like 1-vs.-all, 1-vs.-1 or error correcting output codes
(ECOC). We have chosen the randomized ferns method proposed by Ozuysal etal. [19], be-
cause it is implicitly multi-class capable and has shown to be impressively efficient. The
random fern is a semi-naive Bayesian classifier and an adaptation of the random forest con-
cept introduced by Lepetit etal. [12]. The underlying idea is to build a large number of
random decision trees, where each node represents a decision that narrows down the choices
to a final decision outcome. Random ferns model the conditional probabilities derived from
a large number of binary decisions based on simple single feature comparisons. Similar to
random forests they can handle high dimensional datasets and do not suffer from overfitting.
In our method we use decision stumps of single visual word histogram bins as the inter-
nal node tests. The number of leaf nodes and the overall number of ferns is fixed for all
experiments and parameters are given in Section 3.1.

Please note that all five required steps of our image sequence recognition method all for
themselves have shown to be real-time capable: optical flow detection in [26], MSV detec-
tion in linear time in [17], 3D shape context in [6], hierarchical k-means clustering in [16]
and random ferns in [18]. Thus, considering that optical flow volumes can be calculated
incrementally by only considering the currently required number of frames (defined by the
temporal scale of the 3D shape context descriptor), a real-time image sequence recognition
framework could possibly be implemented.

3 Experiments

To evaluate the performance of our proposed 3D interest points, we applied it for the task
of action recognition. We used the well-known Weizmann dataset [1] and use an exper-
imental setup analogue to [8, 22]. The dataset consists of ten different types of actions:
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IP detection / Feat+Descriptor | gray+3D SIFT | flow+3D SIFT | binary MSV+SC

random sampling 87.78% 90.44% 93.09%

sampling on volume surface 90.22% 93.11% 96.67 %

Table 1: Comparison of the action recognition performance on the Weizmann dataset for
different combinations of interest point detection and feature representation + description
methods. We evaluated the performance using the pure gray-scale appearance, the magnitude
of the optical flow (both described with 3D SIFT [22]) and our binary flow volume (described
by a 3D shape context [6]) at the same 3D interest point locations. The 3D locations are
detected by random sampling or selected on the surface of the optical flow volumes.

bending, jumping jack, jumping, jump in place, running, side jumping, skipping, walking,
one-hand and two-hand waving. There exist videos for each action by nine subjects. Testing
is performed in a leave-one-out-fashion on a per person basis, i.e. training is done on eight
subjects and testing on the unused subject and all its videos.

3.1 Experimental procedure and parameters

The procedure is divided in the following six steps: First, the optical flow is calculated in
each video file. Second, within the optical flow magnitude fields the Maximally Stable Vol-
umes (MSVs) are detected with a minimum size of 200 voxels and under a stability A = 5.
These volumes are used as feature representation. Third, interest point selection is done in
two variants. For comparison with [22] we either sample random points around the binary
volumes or we select random points located on the surface of the volumes. The number of
points is equal in both cases and depends on the complexity of the surface as we sample
around 5 percent of the points on the surface volume. This results in 350 feature points on
average per sequence or six features points per frame. Fourth, the interest points are de-
scribed using two different descriptor variants: the 3D SIFT description method of [22] and
a 3D implementation of shape context [6]. The dimension of the descriptors are chosen to
be equal in all directions and amount to spatial and temporal support of dy = d; = 12. The
underlying feature representation is either our binary flow volume or, again for comparison
reasons, the gray-scale image data or the estimated optical flow magnitudes. Fifth, all de-
scriptors for all videos are clustered with a hierarchical k-means into 243 visual words with
k = 3. The signatures for these visual words are used to classify the test videos. Sixth, the
final classification decision is done using random ferns, which are trained with 150 trees
each with 1024 leaf nodes.

The entire runtime performance of the recognition for an unseen image sequence is about
1.4 seconds per frame in our non-optimized Matlab implementation. The slowest compo-
nents here are the calculation of the MSVs with 480 ms and the 3D shape context description
with 760 ms on a single 3 GHz core.

3.2 Results

First, average recognition results are given in Table 1 comparing different combinations of
interest point detection and feature representation + descriptor variants. As can be seen sam-
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ST features [13] 68.4%
Shape Context+Grad+PCA [15] | 72.8%
Spin images [13] 74.2%
3D SIFT [22] 82.6%
Klaeser [8] 84.3%
Our method 96.7 %

Table 2: Average recognition rates for the Weizmann actions for state-of-the-art methods
using 3D interest point descriptors. Our method is able to boost the recognition performance
on the entire video when comparing to related work using a bag-of-words model. Please
note, more complex methods like [1, 7, 21, 24, 25] already achieve up to 100% on the
Weizmann dataset, however, sometimes only using nine of the ten actions. These results
prove that simple optical flow volumes are a competitive feature representation for the task
of action recognition.

pling on the surface of the volume always outperforms random sampling around the visual
motion areas. Using the interest points located on the surface of the stable flow volumes im-
proves the results by 3%. This clearly shows the benefit of analyzing stable flow volumes for
detecting 3D interest points. The main reason for the improved performance mainly seems
to be that uniformly sampling on the volumes achieves a good balance between interest point
density and informativeness.

In the columns of Table 1 we compare different feature representation and descriptor
combinations. We evaluated three different variants. First, gray-scale image data is described
with a 3D SIFT descriptor. Second, the optical flow magnitude fields are also described by
3D SIFT. Finally, our binary volumes are described using a 3D shape context. The best
result is achieved by our binary stable flow volume and 3D shape context description. This
demonstrates the power of using simple binary flow volumes as feature representation and for
interest point detection. The optical flow volume surfaces alone carry enough information
to correctly classify image sequences. Please note that in contrast to other bag-of-words
approaches [2, 9, 13] we do not require any high-level features or segmentations of the
moving subjects.

The second part of the results shows a comparison to state-of-the-art work in Table 2. In
comparison to directly related work using 3D interest point descriptors in bag-of-words mod-
els for classifying image sequences, we can improve the results by more than 10% to 96.7%.
To the best of our knowledge, this is the highest reported score for action recognition on
the Weizmann dataset using the simple bag-of-words model of 3D interest point descriptors.
Please note that much more complex methods which for example combine multiple features,
analyze spatial relationships or even exploit provided binary segmentations in every frame
like [1, 7, 21, 24, 25] already achieved up to 100% on this dataset. However, some of these
scores were only achieved for the original nine actions, where the most difficult action (skip)
is not included.

Figure 4 shows a confusion matrix, which illustrates our excellent results on the Weiz-
mann action dataset. As can be seen there are only three confusions between actions. One
exists between one-hand and two-hand waving, which results from the frequency of the oth-
erwise very similar flow volume words. We are able to almost correctly classify the problem-
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Figure 4: Confusion map of our method for the ten Weizmann actions: bending, jumping
jack, jumping, jump on position, running, side jumping, skipping, walking, one-hand and
two-hand waving. We are able to classify 96.7% of the image sequences correctly while
only confusing the difficult skipping action once. The confusion between the waving actions
is due to the simple histogram of visual words, which amounts to twice as high frequencies
for the two-hand motion. The third confusion exists between the visual similarities (see
Figure 2) of the jumping-in-place to the waving. However, please note that these confusions
could be easily resolved if spatial relations were added.

atic action of skipping, and just one confusion with the sideways galloping is recorded. The
final yet most interesting confusion shows between the jumping-in-place action and the one-
hand waving. This may be attributed again to similar visual flow words, when comparing
the flow volumes in columns four and nine shown in Figure 2.

4 Conclusion and outlook

In this paper we have introduced a novel 3D interest point detector and feature representa-
tion for describing image sequences. Each image sequence is analyzed as spatio-temporal
volume and Maximally Stable Volumes (MSVs) are detected in efficiently calculated optical
flow magnitude fields. The resulting binary flow volumes highlight the dominant motions in
the sequences. The main contribution of this paper is that we demonstrate that these sim-
ple binary volumes are sufficient to recognize image sequences as they serve as underlying
feature representation and as basis for detecting 3D interest points. By analyzing signatures
of the optical flow volume prototypes in a bag-of-words model, we can classify previously
unseen sequences. We show results for the task of action recognition on the well-known
Weizmann dataset. The proposed method outperforms recently proposed state-of-the-art 3D
interest point detection and description approaches and based on the simple bag-of-words
model achieves an excellent overall recognition performance of 96.7%. Future work will
focus on combining our simple binary optical flow features with appearance-based features
and on integrating spatial distributions of the descriptors for further improving recognition
performance.



10

RIEMENSCHNEIDER, DONOSER, BISCHOF: BAG OF OPTICAL FLOW VOLUMES

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as Space-Time
Shapes. In Proceedings of International Conference on Computer Vision (ICCV), pages
1395-1402, 2005.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse
spatio-temporal features. In Proceedings of Workshop on Performance Evaluation of
Tracking and Surveillance (PETS), pages 65-72, 2005.

M. Donoser and H. Bischof. 3D Segmentation by Maximally Stable Volumes (MSVs).
In Proceedings of International Conference on Pattern Recognition (ICPR), pages 63—
66, 2006.

A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing Action at a Distance. In
Proceedings of International Conference on Computer Vision (ICCV), pages 726733,
2003.

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as Space-Time
Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29
(12):2247-2253, 2007.

M. Grundmann, F. Meier, and 1. Essa. 3D Shape Context and Distance Transform for
Action Recognition. In Proceedings of International Conference on Pattern Recogni-
tion (ICPR), 2008.

H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A Biologically Inspired System for Action
Recognition. In Proceedings of International Conference on Computer Vision (ICCV),
2007.

A. Klaeser, M. Marszalek, and C. Schmid. A Spatio-Temporal Descriptor Based on
3D-Gradients. In Proceedings of British Machine Vision Conference (BMVC), 2008.

I. Laptev and T. Lindeberg. Space-time Interest Points. In Proceedings of International
Conference on Computer Vision (ICCV), pages 432439, 2003.

I. Laptev and T. Lindeberg. Local Descriptors for Spatio-Temporal Recognition. In
International Workshop on Spatial Coherence for Visual Motion Analysis, 2004.

I. Laptev, M. Marszatek, C. Schmid, and B. Rozenfeld. Learning Realistic Human
Actions from Movies. In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition.
In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, pages 775-781, 2005.

J. Liu, S. Ali, and M. Shah. Recognizing human actions using multiple features. In Pro-
ceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide Baseline Stereo from Max-
imally Stable Extremal Regions. In Proceedings of British Machine Vision Conference
(BMVC), pages 384-393, 2002.



RIEMENSCHNEIDER, DONOSER, BISCHOF: BAG OF OPTICAL FLOW VOLUMES 11

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

J. Niebles and L. Fei-Fei. A Hierarchical Model of Shape and Appearance for Human
Action Classification. In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2007.

D. Nistér and H. Stewénius. Scalable Recognition with a Vocabulary Tree. In Proceed-
ings of Conference on Computer Vision and Pattern Recognition (CVPR), volume 2,
pages 2161-2168, 2006.

D. Nistér and H. Stewénius. Linear Time Maximally Stable Extremal Regions. In
Proceedings of European Conference on Computer Vision (ECCV), pages 183—-196,
2008.

M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recognition in Ten Lines of Code.
In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using ran-
dom ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2009.

K. Rapantzikos, Y. Avrithis, and S. Kollias. Dense saliency-based spatiotemporal fea-
ture points for action recognition. In Proceedings of Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

K. Schindler and L. van Gool. Action snippets: How many frames does human action
recognition require? In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

P. Scovanner, S. Ali, and M. Shah. A 3-Dimensional SIFT Descriptor and Its Applica-
tion to Action Recognition. ACM Multimedia, 2007.

J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Match-
ing in Videos. In Proceedings of International Conference on Computer Vision (ICCV),
pages 1470-1477, 2003.

L. Wang and D. Suter. Recognizing Human Activities from Silhouettes: Motion Sub-
space and Factorial Discriminative Graphical Model. In Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

D. Weinland and E. Boyer. Action Recognition using Exemplar-based Embedding.
In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
2008.

C. Zach, T. Pock, and H. Bischof. A Duality Based Approach for Realtime TV-L1
Optical Flow. In Proceedings of Symposium of the German Association for Pattern
Recognition (DAGM), pages 214-223, 2007.



