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Progress in machine learning approaches to object category recognition
has been significant in recent years, yet scaling current methods to many
object classes is limited by the onerous task of manually collecting and la-
belling large training sets. In this paper we propose methods for learning
models for visual object recognition from textual natural language de-
scriptions. For fine-grain categories such as animal or plant species, such
descriptions are readily available in the form of online nature guides (Fig-
ure 1). By extracting salient visual properties from such descriptions, our
approach enables learning of visual recognition with no training images.

We investigate the task of learning to recognise fine-grain object cat-
egories from natural language descriptions alone, using species of butter-
flies as an example. We learn models to recognise ten categories (species)
of butterflies solely from textual descriptions obtained from the eNature
online nature guide; no training images are used. The method comprises
three components: (i) natural language processing (NLP) to build models
from textual descriptions; (ii) visual processing to extract visual attributes
from test images; and (iii) a generative model learnt from text connecting
textual terms with visual attributes.

Natural language processing. Our NLP approach extracts models from
the textual descriptions obtained from eNature (Figure 1). We treat the
problem as an information extraction task, where unstructured informa-
tion in text is converted into structured data in the form of a template. The
input text is first divided into tokens, then a Part-of-Speech (PoS) tagger
computes PoS tags for each token. The tags are modified by a list of rules
to adapt to the specific style of the eNature descriptions. Chunking is
then performed to extract noun phrases (NP) and adjective phrases (AP),
for example “wing has blue spots” or “wings are black”. Finally a tem-
plate is filled by matching the resulting ‘chunks’ against a list of colours,
patterns and location terms.

Visual processing. Visual attributes of an image are extracted for match-
ing against the models learnt from text. Our method bases recognition on
two simple visual attributes determined salient from the textual descrip-
tions: (i) dominant (wing) colour; (ii) coloured spots. To remove back-
ground clutter, images are first segmented using a graph-cut method with
a ‘star shape’ prior. Colour models are learnt which relate pixel values to
named colours e.g. ‘orange’. For each colour name, example pixels from
unlabelled butterfly images are used to learn a Parzen model in L*a*b*
colour space.

Spots are extracted by finding candidates using the Difference-of-
Gaussians (DoG) interest point operator. Each candidate is described by
SIFT descriptors extracted around the interest point, and a linear classifier
labels candidates as either ‘spot’ or ‘non-spot’. The colour of each spot
is estimated as the Gaussian-weighted spatial average of pixels within the
spot region in L*a*b* colour space.

Generative model. The task of predicting the category of butterfly de-
picted in an input image is cast as one of Bayesian inference using a gen-
erative model for each of the ten butterfly categories. An input image I is
classified by assigning it the category Bi which maximises the likelihood
p(I|Bi):
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Figure 1: Example visual description from eNature, for the Red Admiral
butterfly Vanessa atalanta. The question we investigate in this paper is
whether a computer can learn to recognise this species of butterfly from
the textual description alone, and indeed can humans?

• zs
j is the observed L*a*b* colour of spot j

• zw are the observed L*a*b* colours of non-spot (wing) pixels
• p(z|c) is the probability of observing pixel value z for colour name c
• P(cs
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k |Bi) are learnt priors for category Bi, over spot and

dominant (wing) colour names respectively.

The category-specific spot colour priors P(cs
k|Bi) are constructed from

the learnt template by assigning equal probability to each colour in the
template. For example, if the template contains ‘white spots’ and ‘black
spots’, the probability of each is assigned 0.5. The dominant colour name
priors P(cw

k |Bi) are defined as a mixture of two components:

P(cw
k |Bi) = αP(cw

k |Θ
d
i )+(1−α)P(cw

k |Θ
o
i )

where P(cw
k |Θ

d
i ) and P(cw

k |Θ
o
i ) denote the prior over colour names for the

dominant colour and ‘other’ (pattern) colours respectively. These are set
uniformly for all corresponding colour names appearing in the template.
For example, if the template contains a dominant colour of ‘orange’ and
other colours ‘black’ and ‘white’, then P(cw
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i ) is 1 for orange and zero

for all other colours, and P(cw
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o
i ) is 0.5 for black and white. The param-

eter α controls how much of the image is expected to be explained by the
dominant colour. Rather than setting this to an arbitrary value we define
a Beta hyper-prior over its value, and marginalise.

Results. The paper reports results of two sets of experiments, measuring
performance of humans (as an ‘upper-bound’) and the proposed method.
A dataset of 832 images of ten butterfly categories (species) with asso-
ciated descriptions is used. The task of learning to recognise butterflies
from text alone proves challenging for humans, with native and non-native
English speakers achieving accuracy of 72% and 51% respectively. Our
proposed method achieves 54% accuracy, substantially better than chance
(10%), and slightly outperforming the non-native English speakers!

Conclusions. Our work proposes new approaches for exploiting NLP
methods to learn object recognition without example images, and has po-
tential for expanding current object recognition to fine-grain categories
where it is difficult to find many training images. Further discussion can
be found in the paper.


