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Abstract

In this paper we present a method for face shape and albedo estimation which uses a
morphable model in conjunction with non-Lambertian shape-from-shading. We use sur-
face normal and albedo estimates to construct a spherical harmonic basis which can be
used generatively to model face appearance variation under arbitrarily complex illumi-
nation. This allows us to perform illumination insensitive face recognition given only a
single gallery image. In contrast to other similar methods, our surface normal and albedo
estimates are not constrained by a statistical model and are instead inferred from shading
cues. We present recognition results on the Yale Face Database B.

1 Introduction
The most challenging formulation of the face recognition problem is to recognise a face,
previously seen only once, under radically different pose or illumination conditions. In this
paper we focus on extreme variations in illumination. Here, the appearance of the same
subject can vary dramatically when the lighting direction changes. In fact, entirely different
portions of the face may be visible under two different extreme illuminations since much of
the face will be in shadow.

Where multiple images of a subject under varying illumination are available at the train-
ing stage, a number of appearance-based approaches have proven robust for illumination
insensitive recognition [1, 6, 7]. The idea is to model image variability caused by changes in
illumination using a linear subspace constructed for each subject. The basis set can be used
in a generative manner to synthesise photorealistic images under arbitrary and possibly ex-
treme lighting conditions. Impressive illumination insensitive face recognition performance
can be achieved using these approaches. The drawback of these approaches is that they ei-
ther require multiple training images (typically 7-9) or knowledge of the underlying shape
and reflectance information (which may be recovered from the multiple training images).
Further, appearance-based approaches cannot be used for pose invariant recognition as the
constructed subspace is valid only for a single pose.

For the harder case, where only a single training image is available, the most promising
methods use 3D face shape information. This has the obvious advantage that it is an intrinsic
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Figure 1: Given an input 2D image under frontal illumination (first column). The figure
shows the estimated albedo map and bump map (second column) using the algorithm de-
scribed in this paper. The last 3 columns show the spherical harmonic subspace derived from
the estimated albedo and bump maps.

property of the face and hence is invariant to both illumination conditions and pose. The
challenge is to recover accurate 3D facial shape information from a single image. The mor-
phable model of Blanz and Vetter [2] captures variation in both 3D shape and texture and
is fitted to a single image using an analysis-by-synthesis framework. The difficulty here is
that fitting the model to an image requires the costly minimisation of an error functional, the
solution of which suffers from model dominance. For recognition, the model must be fitted
to both gallery and probe images and the parametric descriptors of the two compared. Zhang
and Samaras [13] on the other hand, use the fit of a morphable model to each gallery image to
obtain a spherical harmonic basis for that subject. This is also done in a model-based manner
by learning a statistical model of spherical harmonic bases. The resulting basis can be used
generatively to predict the appearance of a subject under arbitrarily complex illumination,
although an assumption of Lambertian reflectance is made.

An interesting technique which does not fit into either of the classifications above uses
local gradient angle features extracted from a single training image, which are subsequently
matched against features from probe images [4]. The idea is to learn which such features
are insensitive to variations in illumination using a large dataset of objects observed under
varying illumination. However, as for the appearance-based approaches, this method cannot
handle varying pose.

In this paper, we present a non-Lambertian face shape estimation algorithm and show
how it can be used for illumination insensitive face recognition. Our method combines ideas
from morphable models with those from classical shape-from-shading. The aim is to retain
the robustness and flexibility of using a statistical model, with the fine surface detail and
discriminating features conveyed by irradiance cues. Our algorithm uses a morphable model
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Figure 2: Shows the estimated bump maps rendered on the fitted morphable model meshes
for 5 subjects in the Yale Face Database B.

to obtain a 3D face mesh and shape-from-shading to estimate a non-model-based surface
normal map (bump map) and diffuse albedo map. The surface normal and diffuse albedo
maps not are constrained by a statistical model and are therefore free to capture atypical,
discriminating facial features. We perform shape recovery on the gallery images only and
use the surface normals and albedo estimates to compute a spherical harmonic basis which
is subsequently used for recognition. We present results on the Yale Face Database B [6] and
compare our method with state-of-the-art published results.

2 3D Morphable Models as Shape Spaces

We use a morphable model to capture variations in the 3D shape of a human face. The
morphable model is constructed according to Kendall’s notion of a shape space [10].

Any face surface x can be represented as a linear combination of the average surface and
the model eigenvectors Pi

x = x̄+
m

∑
i=1

biPi = x̄+Pb, (1)

where b = (b1, . . . ,bm)T is a vector of shape parameters and m is the number of face meshes
in the training set. P is the matrix of the n most significant eigenvectors. We may choose to
retain n < m model dimensions, such that a certain percentage of the cumulative variance,
described by the eigenvalues λi is captured.

The lengths of the parameter vectors, as measured by the square of the Mahalanobis
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Figure 3: The figure explains the recognition principle. Given an input image (left column)
of subject i, captured under lighting angles of 50◦− 77◦. The right column shows the im-
ages projected onto the ith spherical harmonic subspace (top) and the jth spherical harmonic
subspace (bottom). Note j corresponds to to a subject in the database disjoint from i

distance from the mean follow a chi-square distribution with n degrees of freedom [10]:

D2
M(b) =

n

∑
i=1

(
bi√
λi

)2

∼ χ
2
n . (2)

An interesting observation is that the chi-squared distribution of parameter vector lengths
implies that the parameter vectors lie approximately on the surface of hyperellipsoid in pa-
rameter space. This observation suggests sensible constraints to enforce on the parameter
vector lengths [10].

3 Shape-from-Shading
The aim of computational shape-from-shading is to estimate 3D surface shape from single
2D intensity images. In order to recover surface orientation from image intensity measure-
ments, the reflectance properties of the surface (human skin in our case) must be modelled.

The Blinn-Phong reflectance model [3] is a phenomenological attempt to describe sur-
faces which reflect light both specularly and diffusely. It comprises a Lambertian diffuse
term and a specular term controlled by the shininess parameter:

gPhong (θi,θh,ρd ,ρs,ηs) = ρd cos(θi)+ρs cosηs (θh) , (3)

where ρd is the diffuse albedo, θi is the angle between the surface normal n and light source
s vectors, ρs is the specular coefficient, ηs is the shininess parameter and θh is the angle
between the surface normal n and the vector h = s+v

‖s+v‖ which bisects the light source s and
viewer v directions.

For an image in which the viewer and light source directions are fixed, the image ir-
radiance equation (3) reduces to a function of the surface normal direction. For typical
reflectance models, this equation does not have an unique minimum and there are likely to
be an infinite set of normal directions all of which minimise the equation.
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The Lambertian diffuse term in 3, provides a partial constraint on the direction of the
surface normal, namely that the angle between the light source and the surface normal is
given by:

θi = arccos(n · s) = arccos
(

I
ρd

)
. (4)

Geometrically, this means that the surface normal must lie on a right circular cone whose
axis is the light source direction and whose half angle is θi. By constraining the surface
normal to lie on the cone, the image irradiance equation is strictly satisfied, thereby ensuring
that the information conveyed by the image is used to its fullest extent. Worthington and
Hancock [12] show how to restore this constraint by rotating a surface normal to its closest
on-cone position:

ń = Θ(a,α) ñ, (5)

where, ñ is an off-cone surface normal and Θ is a rotation matrix which rotates a unit vector
about axis a by an angle α . To restore a normal to the cone, we set a = ñ× s and α =
θi− arccos[ñ · s]. ń is the closest on-cone position that satisfies θi = arccos

(
I

ρd

)
.

We can rearrange 3 and reformulate 4 :

θi = arccos(n · s) = arccos
(

I−ρs cosηs (θh)
ρd

)
. (6)

If we use this angle in the computation of the rotation in (5), we strictly enforce the image
irradiance constraint on a surface normal ń by finding the closest surface normal direction
that satisfies θi = arccos

(
I−ρs cosηs (θh)

ρd

)
.

4 Shading Constraints for Morphable Models
A morphable model allows us to represent a novel face using a linear combination of an
orthonormal basis. Shape-from-shading enables us to modify an estimated set of surface
normals such that they strictly satisfy constraints implied by the reflectance properties of the
surface. In this section we combine these two ideas and formulate a framework that enables
us to estimate the 3D shape based on minimising the arc distance d(e, f) = arccos(e · f),
between two unit normals:

b∗ = arg min
D2

M(b)≤D2
max

∑
p

d (np(b),Θnp(b)) , (7)

where np(b) is the pth vertex normal obtained from the 3D Morphable model. Θ is the ro-
tation matrix that strictly enforces satisfaction of the image irradiance equation on the pth
vertex normal. b∗ is the optimum shape parameter vector that minimises the expression.
D2

max is the maximum allowable parameter vector length, which controls the trade off be-
tween fitting quality and shape plausibility. Optimum performance occurs when D2

max ≈ n
[10]. Vertex normals are computed from the mesh which results from the shape parameters
b using Max’s [9] algorithm:

np(b) = ||∑
f

n f (b)
∣∣E f ×E f +1

∣∣ , (8)
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where the summation is over all f faces incident to the vertex in question and n f (b) is the
face normal of the f th face.

∣∣E f ×E f +1
∣∣ provides weights based on areas of the adjacent

triangles. ‖ represents the normalisation step.
For each vertex in the mesh, we sample the image intensity by projecting the vertex to

the image plane using an orthographic projection. Note that since vertices do not correspond
directly to pixels, we use subpixel sampling to associate an intensity to each vertex. We
denote the intensity associated with the pth vertex as I(r̂p). It is these intensity values which
provide a constraint on the surface normal, which is strictly satisfied by applying the rotation
Θnp(b). The rotated vertex normals strictly satisfy (6). These shape-from-shading normals
possess two important qualities: 1. they will exactly recreate the input image 2. they are not
constrained by the statistical model. The result of this is that they will capture fine surface
detail.

The final ingredient in our method is to iteratively update the parameters of our re-
flectance model. Rearranging (6), we can obtain a per vertex estimate of the diffuse albedo.
However, there is an additional constraint we may impose here. The diffuse albedo may not
be greater than 1 (since a surface cannot reflect more light than was incident upon it). Hence

ρd(r̂p) = min
(

1,
I(r̂p)−ρs cosηs(θ p

h (b))
np(b) · s

)
. (9)

We use the estimated surface normal map (bump map) and albedo map to formulate our
recognition principle.

5 Model Fitting Implementation
Our implementation estimates morphable model shape parameters using an optimisation
based on shape-from-shading constraints. The input to our algorithm is a single intensity
image, the light source direction and the viewer direction. We make a number of assump-
tions to simplify the fitting of the model. The first follows [5] and assumes that the specular
coefficient (ρs) and roughness parameter η , are constant over the surface. We allow the
diffuse albedo, ρd , to vary spatially over the face. Allowing the albedo and surface normal
to vary arbitrarily renders the problem under-constrained. Therefore, in practice we enforce
an additional regularisation constraint which requires the albedo to be piecewise smooth (by
applying an edge sensitive smoothing over a small region).

Following Blanz and Vetter [2], we initialise our optimisation using a coarse initial fit of
the model to a sparse set of k 2D annotations (L2d ∈R2k) on the subject’s face (k << p) [10].
This initialisation also provides an estimate of the 3D pose (γ).

(binitial ,γ∗) = arg min
D2

M(b)≤D2
max,γ

E (b,γ) . (10)

E (b,γ) =
∥∥L2d− ˆL2d

∥∥ .

ˆL2d = PoT−1
r (x̄+Pb,γ) .

Using the above shape estimate we determine the initial albedo map ρ initial
d using (9). We

initialise the specular parameters as ρs = 0.2 and η = 20.
The objective function at iteration t of the optimisation is given in Algorithm 1. We

minimise this objective function using Levenberg-Marquardt’s method [8] to find optimal
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estimates of the shape parameter vector. Our convergence criterion is based on the total
angular error between the model-based and shape-from-shading normals:

∑
p

[arccos(np(b) ·Θnp(b))]2 < ε. (11)

6 Face Recognition

In [1, 6, 7] it has been shown that a low-dimensional subspace can accurately capture the
variation in images of a face resulting from arbitrarily complex variations in illumination.
This provides a powerful representation for recognition, in which the identity associated
with the subspace which lies closest to a query image is reported as the unknown identity.
A variety of approaches of varying complexity have been proposed to build these subspaces.
However, all require either the acquisition of a number of training images or knowledge of
the underlying shape and reflectance properties of the face. In this section we show how the
albedo and bump maps estimated from a single image (under frontal illumination) can be
used to build such subspaces.

In this work we follow the approach of Basri and Jacobs [1] based on spherical harmonics
in which the low-dimensional subspace is derived analytically from a model. They show
that under any lighting conditions, at least 98% of the variability in the reflectance function
is captured by the first 9 harmonic images. Their analysis therefore suggests that images of
a convex Lambertian surface will lie close to a 9D subspace. This subspace can be derived
exactly from the estimated albedo and bump maps without being dependent on the quantity
or variability of a sample of training images.

Let ρ denote a vector of length M containing the albedo values across a face’s surface,
such that ρq is the albedo at point q. Similarly, the x, y and z components of the surface
normals are stacked to form a further three vectors of length M: nx, ny and nz, such that
nx,q is the x component of the surface normal at point q. We define: nx2 = nx. ∗ nx (where
the operator .∗ denotes the component-wise product of two vectors of the same length).
Similarly for ny2 , nz2 , nxz, nyz and nxy. The first nine harmonic images for a surface with
known normals and albedo are given by:

b00 = 1√
4π

ρ, be
10 =

√
3

4π
ρ.∗nz,

bo
11 =

√
3

4π
ρ.∗ny, be

11 =
√

3
4π

ρ.∗nx,

b20 = 1
2

√
3

4π
ρ.∗ (2nz2 −nx2 −ny2),

bo
21 = 3

√
5

12π
ρ.∗nyz, be

21 = 3
√

5
12π

ρ.∗nxz,

bo
22 = 3

√
5

12π
ρ.∗nxy, be

22 = 3
2

√
5

12π
ρ.∗ (nx2 −ny2).

(12)

It is clear that these harmonic images may be derived from precisely the information re-
covered by our algorithm. Once again, we form a matrix B containing the basis images as
columns (this time of dimension M×9). However, this basis is not orthonormal. Using a QR
decomposition, we find the M×9 orthonormal basis Q and 9×9 matrix R, such that QR = B.
Given a vector of sampled image intensities I(r̂p), we may now compute the distance to the
subspace using: ‖QQT I(r̂p)− I(r̂p)‖ and perform recognition as described above.
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Algorithm 1: Objective Function for Fitting a 3D Morphable Model using Shape-from
Shading

Input: Light source direction s, Viewer direction v, input image I and shape
parameters b

Output: Albedo map ρd and bump map N
Constrain the shape parameter vector length (7);1

Obtain the p vertex normals np(b) using (8) ;2

Project vertices to image plane using orthographic projection to obtain vertex intensity3

estimates ;
Apply regularisation constraint on the diffuse albedo: ρ

(t−1)
d = f (ρ(t−1)

d ) ;4

Update vertex normals according to sampled image intensities giving bump map5

N(t) = Θnp(b);

Update the albedo map (9): ρ
(t)
d (r̂p) = min

(
1,

I(r̂p)−ρs cosηs (θ p
h (b))

np(b)·s

)
;6

7 Experimental Results

In this section we present recognition results using the algorithm proposed in this paper.
The 3D morphable model (Section 2) was built using 100 scans obtained from a Cyberware
3030PS laser range scanner. We retain 99 modes for our experiment.

We provide face recognition results on the data obtained from the Yale Face Database
B [6], which contains images of 10 individuals (disjoint from the morphable model train-
ing data) under 45 different illumination conditions. We group the lighting variation into 4
subsets of differing extremity (see [6] for details). The images have been cropped using the
metadata provided along with the dataset. All images are resized to 305x305 pixels.

For our recognition experiment we use a single training image with frontal lighting (az-
imuth and elevation angles equal to zero degrees). Although we could choose any illu-
mination for the training image, we use frontal illumination for two reasons. Firstly, this
configuration ensures that none of the face is in shadow. Non-frontal lighting would result in
a degradation in the accuracy of the estimated albedo and bump maps and subsequent recog-
nition performance. Secondly, this corresponds to a useful and realistic scenario in which
the training image is captured using a standard camera with flash. We apply our algorithm
(Section 5) to each training image and use the estimated albedo and bump maps to perform
recognition (as described in Section 6). Figure 1 shows the estimated albedo map, bump
map and spherical harmonic basis for a subject in the database. In Figure 2, we show im-
ages in a novel pose rendered with the estimated bump maps. It is clear that in all cases the
shape recovery process is stable (even with large variations in albedo caused by facial hair)
and that the bump maps successfully capture discriminating facial shape details. Figure 3
explains the recognition principle. Processing a gallery image requires implementation of
our algorithm which takes takes 2 to 2.5 minutes to run on a 1.78 GHz AMD Athlon pro-
cessor. Processing the probe images simply requires sampling of image intensities under an
orthographic projection using the shape and pose parameters estimated for the gallery image
plus the spherical harmonic reconstruction. Both of these steps can be implemented very ef-
ficiently. In contrast, the method of Blanz and Vetter [2] requires 4.5 minutes per gallery and
probe image as the morphable model must be fitted from scratch in both cases. In addition,
our method does not require any prior knowledge or estimation of the lighting conditions in
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a probe image (they can be arbitrarily complex), whereas Blanz and Vetter must explicitly
estimate the lighting conditions when they fit to a probe image.

Table 1 shows the recognition results for our method and compares them with other
methods. Extending our method to non-frontal pose is particularly straightforward, simply
requiring the rigid alignment of the 3D gallery model to a non-frontal probe image. Also,
since the estimated bump map and albedo map are not constrained by a model, they pick up
discriminating features which are likely to be important for recognition in larger databases.

8 Conclusions
We have shown how ideas from shape-from-shading and morphable models can be combined
in a robust face shape estimation framework. By using shading cues, we can obtain surface
normal and albedo estimates that are not constrained by a statistical model and are therefore
free to capture atypical and discriminating surface features and markings. We have shown
how this data can be used to construct a spherical harmonic basis that can be subsequently
used to perform illumination insensitive face recognition from a single gallery image. In
future work we intend to experiment with larger datasets and variations in pose between
probe and gallery images. We also aim to extend our face shape estimation algorithm, such
that reconstruction can take place from images containing arbitrarily complex illumination.
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