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Abstract

Bundle adjustment is a key component of almost any feature based 3D reconstruction
system, used to compute accurate estimates of calibration parameters and structure and
motion configurations. These problems tend to be very large, often involving thousands
of variables. Thus, efficient optimization methods are crucial. The traditional Levenberg
Marquardt algorithm with a direct sparse solver can be efficiently adapted to the special
structure of the problem and works well for small to medium size setups. However, for
larger scale configurations the cubic computational complexity makes this approach pro-
hibitively expensive. The natural step here is to turn to iterative methods for solving the
normal equations such as conjugate gradients. So far, there has been little progress in this
direction. This is probably due to the lack of suitable pre-conditioners, which are con-
sidered essential for the success of any iterative linear solver. In this paper, we show how
multi scale representations, derived from the underlying geometric layout of the problem,
can be used to dramatically increase the power of straight forward preconditioners such
as Gauss-Seidel.

1 Introduction

Estimation of scene structure and camera motion using only image data has been one ¢
central themes of research in photogrammetry, geodesy and computer vision. It has im
tant applications within robotics, architecture, gaming industry etc. Conventional approac
to this problem typically use minimal or factorization techniques to obtain an initial estime
of the unknown parameters followed by non-linear least squares optimization (bundle adj
ment) to obtain a statistically optimal estimate of the parameters relative to a noise Bjodel
Recently there has been an increased interest in solving for the geometry of very large ¢
era systems with applications such as modelling of large photo collecti@hard urban
3D reconstructions]], 9]. In trying to achive such large scale reconstructions, the bund
adjustment stage is commonly a bottle neck and with methods in use today time and m
ory requirements typically grow cubically in the number of cameras and featidesTo
meet the demand for dealing with increasingly large systems there is thus a need to rese
methods, which potentially scale better with problem size.

In this paper, we develop new techniques for fast solution of the bundle adjustment pr
lem using iterative linear solvers. In the Levenberg-Marquardt method the dominant ste
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forming and solving the normal equations typically using (sparse) Cholesky factorization
However, it has been hypothesized that for large problems the metrmmhpfgate gradi-
entscould be a better choicd.(, 14]. So far, this has not been observed and one has mostly
obtained rather disappointing convergence rates. This is likely due to the lack of suitabl
preconditionerswhich are widely agreed to be necessary for the conjugate gradient metho
to work well [6].

We have reason to believe that the state of the art can be improved upon considerat
by utilizing prior knowledge about the problem in designing preconditioners. Commonly
iterative methods handle local errors in the model relatively well, whereas convergence ft
large scale global deformations can be very slow. In order to explicitly adress this probler
we propose to use an overcomplete multiscale representation to achieve faster convergen

In the paper we show how a multi scale basis representation with Gauss-Seidel precon
tioning can be used to obtain dramatic improvement in the convergence rate of conjugate g
dient algorithms for solving the update equation in the bundle adjustment algorithm. Thes
new results open up the possibility of obtaining very efficient algorithms for bundle adjust:
ment as it involves only products of the sparse matriegs the Jacobian) and vectors.¢
the residual vector), instead of solving matrix-vector equations.

The results presented in this paper are of a preliminary nature and allthough we shc
much improved convergence rates for the conjugate gradient method, we are not yet al
to give reliable numbers which show an improvement over the state of the art. This is du
to a number of factors including the existence of highly optimized implementations of the
Levenberg Marquardt method.§ [8]), problem size and the cost of applying suitable pre-
conditioners. Nevertheless we feel that these results deserve to be known to the wider co
munity of researchers and we hope that they might pave the way for new bundle adjustme
algorithms able to handle much larger problems than possible today.

1.1 Related Work

Many ideas have been put forth to adress the complexity of the bundle adjustment problet
One of the most obvious techniques is to make use of the camera-structure division whi
says that given the camera locations, the points will be independent of each other and vi
versa. This yields a block structure of the Jacobian which can be used to obt&ohie
complemensystem, where.g the 3D structure variables have been factored out leaving a
system containing only camera variables which is typically much smakgrtut for larger
problems often still very large. This approach leag been used in th&BAlibrary [8]. A

neat approach to reduce the complexity was presented by Sretvallyin [13] where they
used the camera graph to produce a redwsbetdietal graphwith fewer cameras but similar
topology. This does not use all available information, but attempts to keep only the infor
mation which is important for a good quality reconstruction. Their approach could well be
used in conjunction with our method. A related idea was presented earliej ifof camera
sequences, where the sequence was split into segments and each segment was represt
by avirtual keyframe In [10] a direct approach to handle large problems while still making
use of all data was presented. The problem was split into submaps so that each subn
could be optimized and then merged to form the complete solution. This provided speedt
up to about five submaps but then the merging step started dominating yielding further d
composition too expensive. Although providing certain speedup, all methods mentioned |
this section are based on the Levenberg Marquardt method and thus suffer from the inhere
cubic complexity of this algorithm.
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2 The bundle adjustment problem

The bundle adjustment algorithm is extremely versatile and can be used to handle diffe
types of image features (points, lines, curves, surfaces etc), different camera models an
tocalibration parameter sets. In this paper we will, for simplicity, study the case of calibrat
cameras viewing a point set. For a general overview of the bundle adjustment problem
[4, 14]. We are interested in studying large bundle adjustment problems.

Letx denote the unknown parameters and assume that these can be partitiomgbinto
the camera parameters axglfor the point parameters. Denote bfx) the column vector
of residuals. Here(x) are non-linear functions of the parametgriving on a non-linear
manifold. We will use a Gauss-Newton approach for minimizfiig) = r(x)Tr(x). This
means that in each (outer) iteration we will try to solve

J(X) X = —r (X) 1)

in aleast squares sense, whéfe) is the Jacobian,e. the partial derivatives afwith respect
to local perturbation$x of the parameters. Notice that, although the paramateright lie
on a non-linear manifold as in the case of calibrated rotation matrices, the perturbations
be considered to lie on a linear manifole. the tangent plane. L&l denote the number of
images andN denote the number of points. Letlenote the mean number of points viewed
in each images. As the problem increases in size, we assunredtasss relatively constant,
whereadM andN increase. The number of residuals is tiiea Mn. The vector is then of
size Rx 1 and the Jacobian is of siz&Z (6M + 3N) with 18R non-zero elements.e. 9
non-zero elements per row. The time for calculatirandJ is then proportional t&R. There
are R+ 18R elements to calculate involving a few calculations in the parameters and f
image data.

One possibility to find the upda@@x is to use sparse direct routines for solving over de
termined linear systems,g in matlab or octave by the commadditax=-J\r . Another
approach is to form the normal equations

I ox=—-J"r. 2)
~—~ ~—~
W z

This has a couple of pros and cons. One advantage is that we get a system of equatior
the update. Another advantage is that the size of m#liris considerably smaller thah
However, the condition number is squared by this process and the Masii has quite a
few (36M 4 9N + 36R) non-zero elements. The normal equations have a particular structu
that is revealed, when partioning the matfikin blocks,

w3 9@

Here the matrixXA is block diagonal with 6« 6 blocks andC is block diagonal with 3« 3
blocks. The matriXB has the same type of sparsity as the images measurementisere
are R blocks of size 6x 3, one for each point visible in a camera. Since batandC
are block-diagonal, the process of solving matrix-vector equattons b andCx = b is
relatively simple. A possibility that often is explored is thus to solve the matrix block-wis
by e.g (A—BC1BT)dx; = —z — BC 1z, and similarily for the point parameters. By doing
this we obtain smaller matrix equations with considerably more fill-in.
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3 The conjugate gradient method

The conjugate gradient is an iterative method for solving a symmetric positive definite sys
tems of linear equationdx = b, introduced by Hestenes and Stiefgl T]. In its basic form

it requires only multiplication of the matri& with a vector. The basic way to apply the con-
jugate gradient algorithm to the bundle adjustment problem is to form the normal equatior
JTI6x=—-J"randseA=J"J,b=—J"r.

3.1 Preconditioning of the conjugate gradient method

The crucial issue when applying the conjugate gradient method is the conditioniig of
Whenever the condition numbetA) is large convergence will be slow. In the case of least
squaresA = J"J and thusc(A) = k(J)?, so we will almost inevitably face a large condition
number. In these cases one can agphconditioning which in the case of the conjugate
gradient method means pre-multiplying from left and right with a mdrbe form

ETAEX=E"h.

The idea is to seledE so thatA = ETAE has a smaller condition number than Typi-

cally E is chosen so thaEET approximatesA~! in some sense. Explicitly forming is
expensive and usually avoided by insertiMig= EE" in the right places in the conjugate
gradient method obtaining th@reconditioned conjugate gradient methotvo useful pre-
conditioners can be obtained by writidg= L + LT — D, whereD andL are the diagonal
and lower triangular parts dk. SettingM = D1 is known as Jacobi preconditioning and

M = L-TDL"! yields Gauss-Seidel preconditioning. However, these standard precondi
tioners alone do not seem sufficient to obtain a competetive algoritdn Typically one
achieves an initial boost in convergence but then the algorithm settles into the same slow pe
as the standard conjugate gradient algorithm. Apparently, more domain knowledge needs
be applied. What we propose in this paper is to introduce an overcomplete multiscale re
resentation taylored to the problem. In the experiments section we demonstrate that sucl
representation combined withg Gauss-Seidel can provide much more powerful precondi-
tioning than straightforward preconditioners based directlhyofhis will be discussed in
detail in Sectiont.

3.2 Linear, Non-Linear and Hybrid Conjugate Gradient Methods

As mentioned, originally the conjugate gradient algorithm was introduced to solve a systel
of linear equations. However, it is most easily understood by considering the quadrati
optimization problem migx" Ax— bx (the optimum is given by the solution = b) and
Fletcher and Reeves generalized the procedure to non-quadratic functions yielding the nc
linear conjugate gradients algorithi?][ The large advantage of this method is that it only
ever requires the gradient of the target function and no matrix inversions thus yielding fas
iterations with low memory requirements.

At this point, there are thus two levels where we can apply conjugate gradients. Eithe
we use linear conjugate gradients to solve the normal equalibdgx= —J"r and thus
obtain the Gauss-Newton step we apply non-linear conjugate gradients to directly solve
the non-linear optimization problem. Solving the normal equations at each step gives us tl
good convergence properties of the Gauss-Newton algorithm, but at the expense of runni
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potentially very many conjugate gradient iterations. Applying the non-linear version alloy
us to quickly take many non-linear steps, but we are likely to need many of these as well
at each step the gradient has to be recomputed. For large systems, computing the gre
will itself be relatively expensive.

However, by making use of the fact that we are dealing with a non-lieast squares
problem, we can strike a balance between these two approachesfSipeer T (x)r(x), we
getOf(x) = —JT(x)r(x) and we see that computirigf implies computing the jacobiahof
r. Once we have computddandr) we might as well run a few more iterations keeping thest
fixed. But, since the Gauss-Newton step is anyhow an approximation to the true optim
there is no need to solve the normal equations very exactly and it is likely to be a good i
to abort the linear conjugate gradient method early, going for an approximate solution. A
taking a non-linear step, we start again with a set of linear iterations. Now if the functi
is locally well approximated by a quadratic function (which typically happens close to tl
optimum), the jacobian will not have changed much and there is no need to restart the it
linear loop. Instead we continue the progression of conjugate directions from the new p
as if nothing happened.

Once we deviate too much from the quadratic approximation, the above outlined strat
will no longer work well and it is better to just restart the inner conjugate gradient iteratior
This typically happens eventually as the optimization proceeds. We have found that a hel
tic strategy of resetting the inner loop every third non-linear step or so works well in practi

4 Multiscale Preconditioning

In this section we discuss how a multiscale representation can be used to accelerate
vergence. The conjugate gradient method in itself is invariant under orthonormal chan
of basis. We will, however, show how one can improve convergence rates considerably
combining changes of basis with standard preconditioners. For intuition, consider the
singular vectors of. Using these as basis vectors would tdké to diagonal form and then
Jacobi preconditioning would produce the identity matrix leading to convergence in one s
in the conjugate gradient method. Of course, the singular vectors are way to expensiv
compute, but if we could somehow approximate them, then we should be in a good p
tion. Empirically, large singular values correspond to components representing very Ic
displacements (fine scale) in only a few variables, whereas small singular values corresj
to more global (coarse scale) deformations.

To explicitely tackle this situation we have experimented with various multi-scale rept
sentations of the problem. These @ag be obtained by hierarchically splitting the set of
unknowns. In each step the set of unknown variables is split into two (approximately equi
sized) pieces. This gives a dyadic multi-scale representation of the problem.

In our changes of basis we have experimented with various approaches. The first
proach we tried was using basis vectors corresponding to translation and counter-transl:
as illustrated in figurel.b and c. The basis is similar to that of the Haar basis, but eac
division has three basis vectors corresponding to the three translation directions. By pr
weighting of the vectors the basis can be made orthogonal.

The second approach is similar, but here basis vectors are chosen so that they corres
to both rigid translation and rotation of the cameras. In this case each division has six b
vectors corresponding to three translations and three rotations. Such a basis can also be
orthogonal, while keeping the sparsity structure of the basis.
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Figure 1: lllustration of a multiscale basis at a coarser scale (b) and at a finer scale (c
where points represent camera locations and/or 3D points. The points and/or cameras
hierarchically split into a dyadic basis.

0.8 0.8 0.8 \ /
\D
/ o
0.6 0.6 0.6
- o= P \o S o
o— b 0 P e o—x
0.4 = o= — 0.4 ] -4 0
S N @% P
0.2 Sgreais 0.2 0.2 G\
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 2: lllustration of displacement basis vectors for a specific subset of pigtsgmera
centers). From left to right: translation, rotation and scaling.

In the third approach the basis vectors are chosen so that they correspond to translati
rotation and scaling within a division.

After experimenting with the Haar like basis, we tried a more "naive" multiscale rep-
resentation by simply letting all elements within a divison translate, rotate and scale in th
same direction. The Haar representation is in a sense more sophisticated since it by constr
tion yields an orthogonal basis, whereas the "naive" representation is highly correlated at
a priori we therefore felt that the Haar representation should perform better. To our surpris
we have however not been able to observe this so far. On the countrary, the straight forwa
multiscale representation actually seems to perform slightly better and this is therefore tt
one which has been used in the experiments.

4.1 Constructing A Multi-scale Representation for Bundle Adjustment

We now turn to a more detailed discussion of how the multiscale representation can be o
tained. To get a manageble sized problem, we factor out the 3D point variables leaving on
the camera variables. Now, given a set of cameras with approximately known camera ce
tersty, .-+ ,tm We construct a multiscale representation ma®ixsing a hierarchical binary

partitioning of the cameras; At the top level the cameras are split into two groups and the:s
are then recursively split into successively finer groups until some minimum size is reache
We have experimented with various ways to do this partitioeilggusing the camera graph

and graph clustering algorithms, but so far simple k-means clustering based on the came
locations with two clusters at each level seems to yield the best results. We feel that this
not the end of the story and there should be room to do something more clever on this poir

For each partitiom; C {t1,...,tm}, we now add a set of basis vectarsy, z representing
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translational displacement to the baBis For instance, the basis vectgrwould consist
of ones for each position corresponding toxacoordinate oft; € ¢; and zeros otherwise.
Optionally, we also add basis vectors corresponding to rotation in three different plar
t¥,t7 t? and scalings. See Figure for an illustration of these basis vectors.

The basis vectors are collected in a matrix

P:[Xl7yl7zlv~~~7nymvzm;‘"]7 (4)
used to allow multiscale preconditioning. By changing basis according to
As=PTAP, x=P%, b=PTb (5)

we obtain

A =b, (6)
whereAs is the Shur complemerfts = A— BC 1BT discussed in Sectioh. We can now
write As= L+ D+ LT and apply Jacobi or Gauss-Seidel preconditionindsto

We have found that the best results are obtained when the partitioning is done all the
down to single cameras. At the finest level scaling does of course not apply and what we
there is thus simply the standard basis. This obviously yields an overcomplete’®asid
empirically this seems to be important to obtain good convergence rates.

At a first glance, the step might look expensive since it involves two matrix-matrix
multiplications (cubic complexity) to obtaiA. However, since this is a multiscale trans-
formation it should not be implemented as a matrix multiplication. For instance, the He
wavelet transformatior = B, of a vector is of linear complexity (and not quadratic com-
plexity as normal square matrix-vector multiplication). Furthermfre sparse with'(M)
entries if the number of residuals per image is bounded, which makes the operation ¢
faster.

5 Experimental verification

In a first synthetic experiment we have simulated a long wall (32 meter) with cameras vie
ing the wall at roughly every meter. In this experiment we calculated the ground truth e
mate (not the ground truth reconstruction) by exhaustive Gauss-Newton iterations. A star
guess was chosen so that the error was proportionglgdrithe directionv;, wheres are
the singular values of the Jacobian at the optimum grate corresponding basis vector.
This simulates the effect that we may be far off in the directions that are most difficult
estimate. In the experiment we have first reduced the problem to that of only cameras ¢
Section2. In Figure3 the convergence of different methods are compared. In the figure, t
logarithm of the relative difference between the residual error and the optimal residual e
is shown as a function of optimization steps. In each step of the algorithms a new resic
and Jacobian is calculated followed by 10 iterations of the conjugate gradient method \
different choices of bases and pre-conditioners.

In the figure, curve A illustrates the convergence of the original equation with Jacc
preconditioner. As can be seen in the, the convergence is slow. The convergence impr
with Gauss-Seidel pre-conditioning as is illustrated by curve B, but the real boost in c
vergence is obtained when multiscale representations are combined with Gauss-Seidel
conditioning (curves C, D and E). For all of these there is a steady drop in the RMS el
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Log10 RMS error relative to L2 optimum

E) ]
Iterations

Figure 3:Left: Log,q residual error relative to the optimal solution versus number of itera-
tions for the conjugate gradient method with various forms of preconditioning. A: Jacobi, B
Gauss-Seidel (GS), C: Multiscale representation + GS, D: Multiscale with rotation + GS, E
Multiscale with rotation and scaling + GS F: Multiscale + Jacétight: The synthetic wall
problem viewed from above with ground truth below and perturbed starting guess befor
bundle adjustment above.

relative to the optimum and convergence within machine precision is achieved after 40-60 i
erations. In this experiment we have tried all three approaches multiscale representation w
only translations (curve C), with translations and rotations (curve D) and with translations
rotations and scale (curve E). As can be seen, each additional type of large scale deforn
tion additionally facilitates convergence to the optimum. For illustration purposes, curve
F, shows the convergence with multiscale representation and Jacobi only preconditionin
Surprisingly, multiscale together with this most basic form of preconditioning actually does
worsethan only Jacobi preconditioning. This suggests that on its own, the multiscale repre
sentation is not sufficiently similar to the singular vectors of the jacobian and the additione
Gauss-Seidel step is needed to bring out the potential of this approach.

As previously mentioned, the downside to the combination of changing basis and Gaus
Seidel preconditioning is that it requires the computation of the lower triangular nhatrix
As far as we know, this can only be achieved by explicitly formRIgAsP. However, as
discussed above, the special structure of the representation still makes the cost much loy
than performing actual matrix-matrix multiplications as in the formula.

5.1 The St. Peters Basilica

In addition to the synthetic data set we have run the proposed method on a dataset construc
from 285 real photographs of the St. Peters Basilica in Rome, containing 142283 3D poin
and 466222 image measurements. This data set was uséd io pvaluate an out of core
approach to bundle adjustment. A top view of the reconstructed point cloud of the dataset
shown in Figuret.

On this dataset, we again computed a ground truth estimate by running normal bund
adjustment until complete convergence. Figarshows the relative difference to the op-
timum on a logscale versus the number of iterations. As in the synthetic experiment, w
again see a drastic improvement in convergence with the proposed method for preconditic
ing. Note that on this more difficult data, the Gauss-Seidel preconditioner was not able t
improve convergence much on its own.
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Log, , RMS error relative to L, optimum

EJ )
Iterations

Figure 4: Left: Log;y Bundle adjustment of the St. Peter data set: Residual error relati
to the optimal solution versus number of iterations. A: Jacobi, B: GS, C: Multiscale wi
rotation and scaling + GS, D: Levenberg Marquardight: Topview of the reconstructed
3D points in the St. Peter data set

Ni et al. optimized the sequence in 49 minutes on a standard PC. After removinc
images from the data set which did not see any feature points of the model we optimized
set using our approach. The total running time was about 20 minutes, probably to sligl
lower accuracy. However, for reference we also made an implementation of standard bu
adjustment using Matlabs sparse direct routines for linear systems and this solver optim
the set in also about 20 minutes to full accuracy. Since running time depends on a I
number of fine implementation details, especially for the preconditioned conjugate gradi
method and multiscale representations, the results should only be seen as very prelimi
and it is likely that larger problems are necessary to see real differences. Our main poil
instead the major difference in convergence for an iterative solver that can be obtainec
iterating at multiple scales.

6 Conclusions

In this paper we have studied how multiscale representations can be used in conjunction
standard preconditioners for conjugate gradient algorithms for solving large sparse bul
adjustment problems. Our intuition about the problem is that iterative solvers often h:
convergence problems due to difficulties with large scale, slowly varying deformations. \
have tried to tackle this problem by explicitely introducing variables representing vario
deformations on different scales. The algorithms have been tested on both real and synt
data sets and the results confirm our hypothesis in the sense that vastly improved convere
rates can be obtained this way.

The results are so far preliminary and we have yet to show reliable numbers that den
strate state of the art performance on bundle adjustment in general. We hope that the
provements in convergence rates can open up the possibility to solve larger bundle ad
ment problems than previously possible. More investigation is, however, needed in orde
exploit these results and to obtain efficient algorithms.
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