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Abstract

Bundle adjustment is a key component of almost any feature based 3D reconstruction
system, used to compute accurate estimates of calibration parameters and structure and
motion configurations. These problems tend to be very large, often involving thousands
of variables. Thus, efficient optimization methods are crucial. The traditional Levenberg
Marquardt algorithm with a direct sparse solver can be efficiently adapted to the special
structure of the problem and works well for small to medium size setups. However, for
larger scale configurations the cubic computational complexity makes this approach pro-
hibitively expensive. The natural step here is to turn to iterative methods for solving the
normal equations such as conjugate gradients. So far, there has been little progress in this
direction. This is probably due to the lack of suitable pre-conditioners, which are con-
sidered essential for the success of any iterative linear solver. In this paper, we show how
multi scale representations, derived from the underlying geometric layout of the problem,
can be used to dramatically increase the power of straight forward preconditioners such
as Gauss-Seidel.

1 Introduction

Estimation of scene structure and camera motion using only image data has been one of the
central themes of research in photogrammetry, geodesy and computer vision. It has impor-
tant applications within robotics, architecture, gaming industry etc. Conventional approaches
to this problem typically use minimal or factorization techniques to obtain an initial estimate
of the unknown parameters followed by non-linear least squares optimization (bundle adjust-
ment) to obtain a statistically optimal estimate of the parameters relative to a noise model [5].
Recently there has been an increased interest in solving for the geometry of very large cam-
era systems with applications such as modelling of large photo collections [12] and urban
3D reconstructions [1, 9]. In trying to achive such large scale reconstructions, the bundle
adjustment stage is commonly a bottle neck and with methods in use today time and mem-
ory requirements typically grow cubically in the number of cameras and features [14]. To
meet the demand for dealing with increasingly large systems there is thus a need to research
methods, which potentially scale better with problem size.

In this paper, we develop new techniques for fast solution of the bundle adjustment prob-
lem using iterative linear solvers. In the Levenberg-Marquardt method the dominant step is
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forming and solving the normal equations typically using (sparse) Cholesky factorization.
However, it has been hypothesized that for large problems the method ofconjugate gradi-
entscould be a better choice [10, 14]. So far, this has not been observed and one has mostly
obtained rather disappointing convergence rates. This is likely due to the lack of suitable
preconditioners, which are widely agreed to be necessary for the conjugate gradient method
to work well [6].

We have reason to believe that the state of the art can be improved upon considerably
by utilizing prior knowledge about the problem in designing preconditioners. Commonly
iterative methods handle local errors in the model relatively well, whereas convergence for
large scale global deformations can be very slow. In order to explicitly adress this problem
we propose to use an overcomplete multiscale representation to achieve faster convergence.

In the paper we show how a multi scale basis representation with Gauss-Seidel precondi-
tioning can be used to obtain dramatic improvement in the convergence rate of conjugate gra-
dient algorithms for solving the update equation in the bundle adjustment algorithm. These
new results open up the possibility of obtaining very efficient algorithms for bundle adjust-
ment as it involves only products of the sparse matrices (e.g. the Jacobian) and vectors (e.g.
the residual vector), instead of solving matrix-vector equations.

The results presented in this paper are of a preliminary nature and allthough we show
much improved convergence rates for the conjugate gradient method, we are not yet able
to give reliable numbers which show an improvement over the state of the art. This is due
to a number of factors including the existence of highly optimized implementations of the
Levenberg Marquardt method (e.g. [8]), problem size and the cost of applying suitable pre-
conditioners. Nevertheless we feel that these results deserve to be known to the wider com-
munity of researchers and we hope that they might pave the way for new bundle adjustment
algorithms able to handle much larger problems than possible today.

1.1 Related Work

Many ideas have been put forth to adress the complexity of the bundle adjustment problem.
One of the most obvious techniques is to make use of the camera-structure division which
says that given the camera locations, the points will be independent of each other and vice
versa. This yields a block structure of the Jacobian which can be used to obtain theSchur
complementsystem, wheree.g. the 3D structure variables have been factored out leaving a
system containing only camera variables which is typically much smaller [14], but for larger
problems often still very large. This approach hase.g. been used in theSBAlibrary [8]. A
neat approach to reduce the complexity was presented by Snavelyet al. in [13] where they
used the camera graph to produce a reducedskeletal graphwith fewer cameras but similar
topology. This does not use all available information, but attempts to keep only the infor-
mation which is important for a good quality reconstruction. Their approach could well be
used in conjunction with our method. A related idea was presented earlier in [11] for camera
sequences, where the sequence was split into segments and each segment was represented
by avirtual keyframe. In [10] a direct approach to handle large problems while still making
use of all data was presented. The problem was split into submaps so that each submap
could be optimized and then merged to form the complete solution. This provided speedup
up to about five submaps but then the merging step started dominating yielding further de-
composition too expensive. Although providing certain speedup, all methods mentioned in
this section are based on the Levenberg Marquardt method and thus suffer from the inherent
cubic complexity of this algorithm.
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2 The bundle adjustment problem

The bundle adjustment algorithm is extremely versatile and can be used to handle different
types of image features (points, lines, curves, surfaces etc), different camera models and au-
tocalibration parameter sets. In this paper we will, for simplicity, study the case of calibrated
cameras viewing a point set. For a general overview of the bundle adjustment problem see
[4, 14]. We are interested in studying large bundle adjustment problems.

Let x denote the unknown parameters and assume that these can be partitioned intoxc for
the camera parameters andxp for the point parameters. Denote byr(x) the column vector
of residuals. Herer(x) are non-linear functions of the parametersx living on a non-linear
manifold. We will use a Gauss-Newton approach for minimizingf (x) = r(x)T r(x). This
means that in each (outer) iteration we will try to solve

J(xk)δx =−r(xk) (1)

in a least squares sense, whereJ(x) is the Jacobian,i.e. the partial derivatives ofr with respect
to local perturbationsδx of the parameters. Notice that, although the parametersx might lie
on a non-linear manifold as in the case of calibrated rotation matrices, the perturbations can
be considered to lie on a linear manifold,i.e. the tangent plane. LetM denote the number of
images andN denote the number of points. Letn denote the mean number of points viewed
in each images. As the problem increases in size, we assume thatn stays relatively constant,
whereasM andN increase. The number of residuals is thenR= Mn. The vectorr is then of
size 2R×1 and the Jacobian is of size 2R× (6M + 3N) with 18R non-zero elements,i.e. 9
non-zero elements per row. The time for calculatingr andJ is then proportional toR. There
are 2R+ 18R elements to calculate involving a few calculations in the parameters and the
image data.

One possibility to find the updateδx is to use sparse direct routines for solving over de-
termined linear systems,e.g. in matlab or octave by the commanddeltax=-J\r . Another
approach is to form the normal equations

JTJ︸︷︷︸
W

δx =− JT r︸︷︷︸
z

. (2)

This has a couple of pros and cons. One advantage is that we get a system of equations for
the update. Another advantage is that the size of matrixW is considerably smaller thanJ.
However, the condition number is squared by this process and the matrixW still has quite a
few (36M +9N+36R) non-zero elements. The normal equations have a particular structure,
that is revealed, when partioning the matrixW in blocks,

Wδx =
(

A B
BT C

)(
δxc

δxp

)
=−

(
zc

zp

)
=−z. (3)

Here the matrixA is block diagonal with 6×6 blocks andC is block diagonal with 3×3
blocks. The matrixB has the same type of sparsity as the images measurements,i.e. there
are R blocks of size 6× 3, one for each point visible in a camera. Since bothA andC
are block-diagonal, the process of solving matrix-vector equationsAx = b andCx = b is
relatively simple. A possibility that often is explored is thus to solve the matrix block-wise
by e.g. (A−BC−1BT)δxc =−zc−BC−1zp and similarily for the point parameters. By doing
this we obtain smaller matrix equations with considerably more fill-in.
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3 The conjugate gradient method

The conjugate gradient is an iterative method for solving a symmetric positive definite sys-
tems of linear equationsAx= b, introduced by Hestenes and Stiefel [3, 7]. In its basic form
it requires only multiplication of the matrixA with a vector. The basic way to apply the con-
jugate gradient algorithm to the bundle adjustment problem is to form the normal equations
JTJδx =−JT r and setA = JTJ,b =−JT r.

3.1 Preconditioning of the conjugate gradient method

The crucial issue when applying the conjugate gradient method is the conditioning ofA.
Whenever the condition numberκ(A) is large convergence will be slow. In the case of least
squares,A = JTJ and thusκ(A) = κ(J)2, so we will almost inevitably face a large condition
number. In these cases one can applypreconditioning, which in the case of the conjugate
gradient method means pre-multiplying from left and right with a matrixE to form

ETAEx̂ = ETb.

The idea is to selectE so thatÂ = ETAE has a smaller condition number thanA. Typi-
cally E is chosen so thatEET approximatesA−1 in some sense. Explicitly forminĝA is
expensive and usually avoided by insertingM = EET in the right places in the conjugate
gradient method obtaining thepreconditioned conjugate gradient method. Two useful pre-
conditioners can be obtained by writingA = L + LT −D, whereD andL are the diagonal
and lower triangular parts ofA. SettingM = D−1 is known as Jacobi preconditioning and
M = L−TDL−1 yields Gauss-Seidel preconditioning. However, these standard precondi-
tioners alone do not seem sufficient to obtain a competetive algorithm [14]. Typically one
achieves an initial boost in convergence but then the algorithm settles into the same slow pace
as the standard conjugate gradient algorithm. Apparently, more domain knowledge needs to
be applied. What we propose in this paper is to introduce an overcomplete multiscale rep-
resentation taylored to the problem. In the experiments section we demonstrate that such a
representation combined withe.g. Gauss-Seidel can provide much more powerful precondi-
tioning than straightforward preconditioners based directly onA. This will be discussed in
detail in Section4.

3.2 Linear, Non-Linear and Hybrid Conjugate Gradient Methods

As mentioned, originally the conjugate gradient algorithm was introduced to solve a system
of linear equations. However, it is most easily understood by considering the quadratic
optimization problem minx xTAx−bx (the optimum is given by the solution toAx= b) and
Fletcher and Reeves generalized the procedure to non-quadratic functions yielding the non-
linear conjugate gradients algorithm [2]. The large advantage of this method is that it only
ever requires the gradient of the target function and no matrix inversions thus yielding fast
iterations with low memory requirements.

At this point, there are thus two levels where we can apply conjugate gradients. Either
we use linear conjugate gradients to solve the normal equationsJTJdx= −JT r and thus
obtain the Gauss-Newton stepor we apply non-linear conjugate gradients to directly solve
the non-linear optimization problem. Solving the normal equations at each step gives us the
good convergence properties of the Gauss-Newton algorithm, but at the expense of running
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potentially very many conjugate gradient iterations. Applying the non-linear version allows
us to quickly take many non-linear steps, but we are likely to need many of these as well and
at each step the gradient has to be recomputed. For large systems, computing the gradient
will itself be relatively expensive.

However, by making use of the fact that we are dealing with a non-linearleast squares
problem, we can strike a balance between these two approaches. Sincef (x) = rT(x)r(x), we
get∇ f (x) =−JT(x)r(x) and we see that computing∇ f implies computing the jacobianJ of
r. Once we have computedJ (andr) we might as well run a few more iterations keeping these
fixed. But, since the Gauss-Newton step is anyhow an approximation to the true optimum,
there is no need to solve the normal equations very exactly and it is likely to be a good idea
to abort the linear conjugate gradient method early, going for an approximate solution. After
taking a non-linear step, we start again with a set of linear iterations. Now if the function
is locally well approximated by a quadratic function (which typically happens close to the
optimum), the jacobian will not have changed much and there is no need to restart the inner
linear loop. Instead we continue the progression of conjugate directions from the new point
as if nothing happened.

Once we deviate too much from the quadratic approximation, the above outlined strategy
will no longer work well and it is better to just restart the inner conjugate gradient iterations.
This typically happens eventually as the optimization proceeds. We have found that a heuris-
tic strategy of resetting the inner loop every third non-linear step or so works well in practice.

4 Multiscale Preconditioning

In this section we discuss how a multiscale representation can be used to accelerate con-
vergence. The conjugate gradient method in itself is invariant under orthonormal changes
of basis. We will, however, show how one can improve convergence rates considerably by
combining changes of basis with standard preconditioners. For intuition, consider the left
singular vectors ofJ. Using these as basis vectors would takeJTJ to diagonal form and then
Jacobi preconditioning would produce the identity matrix leading to convergence in one step
in the conjugate gradient method. Of course, the singular vectors are way to expensive to
compute, but if we could somehow approximate them, then we should be in a good posi-
tion. Empirically, large singular values correspond to components representing very local
displacements (fine scale) in only a few variables, whereas small singular values correspond
to more global (coarse scale) deformations.

To explicitely tackle this situation we have experimented with various multi-scale repre-
sentations of the problem. These cane.g. be obtained by hierarchically splitting the set of
unknowns. In each step the set of unknown variables is split into two (approximately equally
sized) pieces. This gives a dyadic multi-scale representation of the problem.

In our changes of basis we have experimented with various approaches. The first ap-
proach we tried was using basis vectors corresponding to translation and counter-translation
as illustrated in figure1.b and c. The basis is similar to that of the Haar basis, but each
division has three basis vectors corresponding to the three translation directions. By proper
weighting of the vectors the basis can be made orthogonal.

The second approach is similar, but here basis vectors are chosen so that they correspond
to both rigid translation and rotation of the cameras. In this case each division has six basis
vectors corresponding to three translations and three rotations. Such a basis can also be made
orthogonal, while keeping the sparsity structure of the basis.
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Primary
Division

Secondary
Divisions

(a) (b) (c)
Figure 1: Illustration of a multiscale basis at a coarser scale (b) and at a finer scale (c),
where points represent camera locations and/or 3D points. The points and/or cameras are
hierarchically split into a dyadic basis.
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Figure 2: Illustration of displacement basis vectors for a specific subset of points (e.g. camera
centers). From left to right: translation, rotation and scaling.

In the third approach the basis vectors are chosen so that they correspond to translation,
rotation and scaling within a division.

After experimenting with the Haar like basis, we tried a more "naive" multiscale rep-
resentation by simply letting all elements within a divison translate, rotate and scale in the
same direction. The Haar representation is in a sense more sophisticated since it by construc-
tion yields an orthogonal basis, whereas the "naive" representation is highly correlated and
a priori we therefore felt that the Haar representation should perform better. To our surprise
we have however not been able to observe this so far. On the countrary, the straight forward
multiscale representation actually seems to perform slightly better and this is therefore the
one which has been used in the experiments.

4.1 Constructing A Multi-scale Representation for Bundle Adjustment

We now turn to a more detailed discussion of how the multiscale representation can be ob-
tained. To get a manageble sized problem, we factor out the 3D point variables leaving only
the camera variables. Now, given a set of cameras with approximately known camera cen-
terst1, · · · , tm we construct a multiscale representation matrixP using a hierarchical binary
partitioning of the cameras; At the top level the cameras are split into two groups and these
are then recursively split into successively finer groups until some minimum size is reached.
We have experimented with various ways to do this partitioninge.g. using the camera graph
and graph clustering algorithms, but so far simple k-means clustering based on the camera
locations with two clusters at each level seems to yield the best results. We feel that this is
not the end of the story and there should be room to do something more clever on this point.

For each partitionci ⊂{t1, . . . , tm}, we now add a set of basis vectorsxi ,yi ,zi representing
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translational displacement to the basisP. For instance, the basis vectorxi would consist
of ones for each position corresponding to anx coordinate ofti ∈ ci and zeros otherwise.
Optionally, we also add basis vectors corresponding to rotation in three different planes,
txy
i , tyz

i , tzx
i and scalingsi . See Figure2 for an illustration of these basis vectors.

The basis vectors are collected in a matrix

P = [x1,y1,z1, . . . ,xm,ym,zm, . . . ], (4)

used to allow multiscale preconditioning. By changing basis according to

Ãs = PTAsP, x = Px̃, b̃ = PTb (5)

we obtain
Ãsx̃ = b̃, (6)

whereAs is the Shur complementAs = A−BC−1BT discussed in Section2. We can now
write Ãs = L̃+ D̃+ L̃T and apply Jacobi or Gauss-Seidel preconditioning toÃs.

We have found that the best results are obtained when the partitioning is done all the way
down to single cameras. At the finest level scaling does of course not apply and what we get
there is thus simply the standard basis. This obviously yields an overcomplete basisP and
empirically this seems to be important to obtain good convergence rates.

At a first glance, the step5 might look expensive since it involves two matrix-matrix
multiplications (cubic complexity) to obtaiñA. However, since this is a multiscale trans-
formation it should not be implemented as a matrix multiplication. For instance, the Haar
wavelet transformation ˆx = Phaarx of a vector is of linear complexity (and not quadratic com-
plexity as normal square matrix-vector multiplication). FurthermoreA is sparse withO(M)
entries if the number of residuals per image is bounded, which makes the operation even
faster.

5 Experimental verification

In a first synthetic experiment we have simulated a long wall (32 meter) with cameras view-
ing the wall at roughly every meter. In this experiment we calculated the ground truth esti-
mate (not the ground truth reconstruction) by exhaustive Gauss-Newton iterations. A starting
guess was chosen so that the error was proportional to 1/si in the directionvi , wheresi are
the singular values of the Jacobian at the optimum andvi are corresponding basis vector.
This simulates the effect that we may be far off in the directions that are most difficult to
estimate. In the experiment we have first reduced the problem to that of only cameras as in
Section2. In Figure3 the convergence of different methods are compared. In the figure, the
logarithm of the relative difference between the residual error and the optimal residual error
is shown as a function of optimization steps. In each step of the algorithms a new residual
and Jacobian is calculated followed by 10 iterations of the conjugate gradient method with
different choices of bases and pre-conditioners.

In the figure, curve A illustrates the convergence of the original equation with Jacobi
preconditioner. As can be seen in the, the convergence is slow. The convergence improves
with Gauss-Seidel pre-conditioning as is illustrated by curve B, but the real boost in con-
vergence is obtained when multiscale representations are combined with Gauss-Seidel pre-
conditioning (curves C, D and E). For all of these there is a steady drop in the RMS error
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Figure 3:Left : Log10 residual error relative to the optimal solution versus number of itera-
tions for the conjugate gradient method with various forms of preconditioning. A: Jacobi, B:
Gauss-Seidel (GS), C: Multiscale representation + GS, D: Multiscale with rotation + GS, E:
Multiscale with rotation and scaling + GS F: Multiscale + Jacobi.Right: The synthetic wall
problem viewed from above with ground truth below and perturbed starting guess before
bundle adjustment above.

relative to the optimum and convergence within machine precision is achieved after 40-60 it-
erations. In this experiment we have tried all three approaches multiscale representation with
only translations (curve C), with translations and rotations (curve D) and with translations,
rotations and scale (curve E). As can be seen, each additional type of large scale deforma-
tion additionally facilitates convergence to the optimum. For illustration purposes, curve
F, shows the convergence with multiscale representation and Jacobi only preconditioning.
Surprisingly, multiscale together with this most basic form of preconditioning actually does
worsethan only Jacobi preconditioning. This suggests that on its own, the multiscale repre-
sentation is not sufficiently similar to the singular vectors of the jacobian and the additional
Gauss-Seidel step is needed to bring out the potential of this approach.

As previously mentioned, the downside to the combination of changing basis and Gauss-
Seidel preconditioning is that it requires the computation of the lower triangular matrixL.
As far as we know, this can only be achieved by explicitly formingPTAsP. However, as
discussed above, the special structure of the representation still makes the cost much lower
than performing actual matrix-matrix multiplications as in the formula.

5.1 The St. Peters Basilica

In addition to the synthetic data set we have run the proposed method on a dataset constructed
from 285 real photographs of the St. Peters Basilica in Rome, containing 142283 3D points
and 466222 image measurements. This data set was used in [10] to evaluate an out of core
approach to bundle adjustment. A top view of the reconstructed point cloud of the dataset is
shown in Figure4.

On this dataset, we again computed a ground truth estimate by running normal bundle
adjustment until complete convergence. Figure4 shows the relative difference to the op-
timum on a logscale versus the number of iterations. As in the synthetic experiment, we
again see a drastic improvement in convergence with the proposed method for precondition-
ing. Note that on this more difficult data, the Gauss-Seidel preconditioner was not able to
improve convergence much on its own.
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Figure 4: Left : Log10 Bundle adjustment of the St. Peter data set: Residual error relative
to the optimal solution versus number of iterations. A: Jacobi, B: GS, C: Multiscale with
rotation and scaling + GS, D: Levenberg Marquardt.Right: Topview of the reconstructed
3D points in the St. Peter data set

Ni et al. optimized the sequence in 49 minutes on a standard PC. After removing 5
images from the data set which did not see any feature points of the model we optimized the
set using our approach. The total running time was about 20 minutes, probably to slightly
lower accuracy. However, for reference we also made an implementation of standard bundle
adjustment using Matlabs sparse direct routines for linear systems and this solver optimized
the set in also about 20 minutes to full accuracy. Since running time depends on a large
number of fine implementation details, especially for the preconditioned conjugate gradient
method and multiscale representations, the results should only be seen as very preliminary
and it is likely that larger problems are necessary to see real differences. Our main point is
instead the major difference in convergence for an iterative solver that can be obtained by
iterating at multiple scales.

6 Conclusions

In this paper we have studied how multiscale representations can be used in conjunction with
standard preconditioners for conjugate gradient algorithms for solving large sparse bundle
adjustment problems. Our intuition about the problem is that iterative solvers often have
convergence problems due to difficulties with large scale, slowly varying deformations. We
have tried to tackle this problem by explicitely introducing variables representing various
deformations on different scales. The algorithms have been tested on both real and synthetic
data sets and the results confirm our hypothesis in the sense that vastly improved convergence
rates can be obtained this way.

The results are so far preliminary and we have yet to show reliable numbers that demon-
strate state of the art performance on bundle adjustment in general. We hope that the im-
provements in convergence rates can open up the possibility to solve larger bundle adjust-
ment problems than previously possible. More investigation is, however, needed in order to
exploit these results and to obtain efficient algorithms.
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