Bundle Adjustment using Conjugate Gradients with Multiscale Preconditioning
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Bundle adjustment is a key component of almost any feature based 3D

reconstruction system, used to compute accurate estimates of calibratiorr o- o o8 s NS AN S
parameters and structure and motion configurations. The job of the bun-* s o oo » é\, Jf o ey L
dle adjustment algorithm is typically to non-linearly minimizg thelL, ot "*;:ij* ot { N < = b e
norm of the reprojection errors. Recently there has been an increased in’ i oz < o %R
terest in solving for the geometry of very large camera systems [1, 2, 4] ° ° °¢ o o o 0z 04 0o 08 1 0 02 04 0008t

and there is thus a need to research methods, which potentially scale better
with problem size than the methods in use today.

In the paper, we develop new techniques for fast solution of the bundle
adjustment problem using iterative linear solvers. In the commonly used
Levenberg-Marquardt method the dominant step is forming and solving
the normal equations typically using (sparse) Cholesky factorization. How-
ever, it has been hypothesized that for large problems the mettmmhef
jugate gradientscould be a better choice [3, 5]. So far though one has
mostly obtained rather dlsgppomtlng convergence rates this way. Thl‘—slg';%re 1: Top: Displacement basis vectors for a subseeaf camera
likely due to the lack of suitablpreconditioners In the paper we show S . : ; .

. - . . enters. From left to right: translation, rotation and scalifpttom:
how multi scale representations, derived from the underlying geom(%rlc

. . 0Q4 residual error relative to the optimal solution using various forms
layout of the problem, can be used to dramatically increase the power GHo P 9

straight forward preconditioners such as Gauss-Seidel. of preconditioning. A: Jacobi, B: Gauss-Seidel (GS), C: Multiscale rep-

Let x denote the unknown parameters to be estimated and denotrée entation + GS, D: Multiscale with rotation + GS, E: Multiscale with

. . SOt tion and scaling + GS F: Multiscale + Jacobi.
r(x) the column vector of residuals. Heréx) are non-linear functions g
of the parameters living on a non-linear manifold. We will consider a

Gauss-Newton approach for minimizirfgx) = r(x)"r(x). This means  For each partitior; C {ts,...,tm}, we now add a set of basis vec-

r relative to L, optimum

Log, , RMS error

that in each (outer) iteration we will try to solve tors iy, z representing translational displacement to the basior
s instance, the basis vectgrwould consist of ones for each position corre-
I(4) % = —T (%) (1) sponding to am coordinate of; € ¢; and zeros otherwise. Optionally, we

in a least squares sense, whé(e) is the Jacobiari,e. the partial deriva- %(lfoy?dgxbas's vegtors corresppndlng to rotat!on n three different plahes,
S 77t and scalings. See Figure 1 for an illustration of these basis

tives ofr with respect to local perturbatiods of the parameters. 1o 0 . . .

In its basic form, the conjugate gradient method solves a square S\%gf-gors. The basis vectors are collected in a matrix
metric systemAx = b and requires only multiplication of the matri P=[X1,Y1,21,- -, Xm, Ym; Zm; - - -], 2)
with a vector. The basic way to apply the conjugate gradient algorithm to
the bundle adjustment problem is to form the normal equatidd$x = Used to allow multiscale preconditioning. By changing basis according to
—JTr and setA = JTJ,b = —JTr. The crucial issue when applying the ¢ o7 T
conjugate gradient method is the conditioningdofWhenever the condi- Ao=P AR x=PX b=P'b ®
tion numberi(A) is large convergence will be slow. In the case of leagt obtainA = b, whereAs is the Shur complement matrix for the cam-
squaresA=JT Jand thusc(A) = k(J)2, so we will almost inevitably face era part ofi™ J (for details, see the paper). We can now also apply standard
a large condition number. In these cases one can gppbonditioning preconditioning to the matrids.
which in the case of the conjugate gradient method means pre-multiplyingThe synthetic as well as real experiments we have performed so far

from left and right with a matri>E to form both indicate that vastly improved convergence rates can be obtained by
S - iterating on a multiscale representationfgf However, the results are so
E'AEX=E'b. far preliminary and we have yet to show reliable numbers that demonstrate

The idea is to seled so thatA — ETAE has a smaller condition numbeitate of the art performance compared_ to existing implementations of the
thanA evenberg-Marquardt method. See Figure 1 (bottom) for results from a

Folr the bundle adiustment problem. standard preconditioners suc?}/gtshetic experiment. The conclusion is that multiscale representations

. Jus P ] P g may well have the possibility to become a very effective tool for large
the Jacobi or Gauss-Seidel preconditioners do not seem sufficient to_ Q- . ) Co .
) . . . scale bundle adjustment, but that more investigation is needed in order to
tain a competetive algorithm [5]. Apparently, more domain knowledge , . . - .
. . . . . loit these results and to obtain efficient algorithms.

needs to be applied. In particular, iterative algorithms seem to have prob-
lems with correcting large scale, global deformations. What we proppigeN. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool. 3d urban scene
in the paper is to tackle this situation by introducing an overcomplete modeling integrating recognition and reconstructi¢mt. Journal of
multiscale representation taylored to the problem. Computer Vision78(2-3):121-141, July 2008.

A multiscale representation cang be obtained by hierarchically2] akbarzadeh F. Mordohai. Towards urban 3d reconstruction from
splitting the set of unknowns. In each step the set of unknown variablesvideo’ 20086.
is split into two (approximately equally sized) pieces. This gives a dya af_K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for

multl-scalfe representation of the problem. On.each level (scale) new ' large-scale 3d reconstruction. Rvoc. 11th Int. Conf. on Computer
ables are introduced representing transformations of whole groups of vari-

- . . Vision, Ri iro, Brazi 1-8, 2007.

ables together. These transformations cae.betranslation, rotation or ision, Rio de Janelrg razibages _8 . 00 .
scaling. [4] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from

To get a manageble sized problem, we factor out the 3D point vari- Internet photo collectionsint. Journal of Computer Visign80(2):
ables leaving only the camera variables. Now, given a set of cameraslsg_?lo' November 2008. o
with approximately known camera centeys - ,tm we construct a mul- [3] W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle
tiscale representation matrixusing a hierarchical binary partitioning of ~ adjustment: A modern synthesis. Wision Algorithms: Theory and
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