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Bundle adjustment is a key component of almost any feature based 3D
reconstruction system, used to compute accurate estimates of calibration
parameters and structure and motion configurations. The job of the bun-
dle adjustment algorithm is typically to non-linearly minimizee.g. theL2
norm of the reprojection errors. Recently there has been an increased in-
terest in solving for the geometry of very large camera systems [1, 2, 4]
and there is thus a need to research methods, which potentially scale better
with problem size than the methods in use today.

In the paper, we develop new techniques for fast solution of the bundle
adjustment problem using iterative linear solvers. In the commonly used
Levenberg-Marquardt method the dominant step is forming and solving
the normal equations typically using (sparse) Cholesky factorization. How-
ever, it has been hypothesized that for large problems the method ofcon-
jugate gradientscould be a better choice [3, 5]. So far though one has
mostly obtained rather disappointing convergence rates this way. This is
likely due to the lack of suitablepreconditioners. In the paper we show
how multi scale representations, derived from the underlying geometric
layout of the problem, can be used to dramatically increase the power of
straight forward preconditioners such as Gauss-Seidel.

Let x denote the unknown parameters to be estimated and denote by
r(x) the column vector of residuals. Herer(x) are non-linear functions
of the parametersx living on a non-linear manifold. We will consider a
Gauss-Newton approach for minimizingf (x) = r(x)T r(x). This means
that in each (outer) iteration we will try to solve

J(xk)δx =−r(xk) (1)

in a least squares sense, whereJ(x) is the Jacobian,i.e. the partial deriva-
tives ofr with respect to local perturbationsδx of the parameters.

In its basic form, the conjugate gradient method solves a square sym-
metric systemAx = b and requires only multiplication of the matrixA
with a vector. The basic way to apply the conjugate gradient algorithm to
the bundle adjustment problem is to form the normal equationsJTJδx =
−JT r and setA = JTJ,b = −JT r. The crucial issue when applying the
conjugate gradient method is the conditioning ofA. Whenever the condi-
tion numberκ(A) is large convergence will be slow. In the case of least
squares,A= JTJ and thusκ(A) = κ(J)2, so we will almost inevitably face
a large condition number. In these cases one can applypreconditioning,
which in the case of the conjugate gradient method means pre-multiplying
from left and right with a matrixE to form

ETAEx̂ = ETb.

The idea is to selectE so thatÂ = ETAE has a smaller condition number
thanA.

For the bundle adjustment problem, standard preconditioners such as
the Jacobi or Gauss-Seidel preconditioners do not seem sufficient to ob-
tain a competetive algorithm [5]. Apparently, more domain knowledge
needs to be applied. In particular, iterative algorithms seem to have prob-
lems with correcting large scale, global deformations. What we propose
in the paper is to tackle this situation by introducing an overcomplete
multiscale representation taylored to the problem.

A multiscale representation cane.g. be obtained by hierarchically
splitting the set of unknowns. In each step the set of unknown variables
is split into two (approximately equally sized) pieces. This gives a dyadic
multi-scale representation of the problem. On each level (scale) new vari-
ables are introduced representing transformations of whole groups of vari-
ables together. These transformations can bee.g. translation, rotation or
scaling.

To get a manageble sized problem, we factor out the 3D point vari-
ables leaving only the camera variables. Now, given a set of cameras
with approximately known camera centerst1, · · · , tm we construct a mul-
tiscale representation matrixP using a hierarchical binary partitioning of
the cameras.
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Figure 1: Top: Displacement basis vectors for a subset ofe.g. camera
centers. From left to right: translation, rotation and scaling.Bottom:
Log10 residual error relative to the optimal solution using various forms
of preconditioning. A: Jacobi, B: Gauss-Seidel (GS), C: Multiscale rep-
resentation + GS, D: Multiscale with rotation + GS, E: Multiscale with
rotation and scaling + GS F: Multiscale + Jacobi.

For each partitionci ⊂ {t1, . . . , tm}, we now add a set of basis vec-
tors xi ,yi ,zi representing translational displacement to the basisP. For
instance, the basis vectorxi would consist of ones for each position corre-
sponding to anx coordinate ofti ∈ ci and zeros otherwise. Optionally, we
also add basis vectors corresponding to rotation in three different planes,
txy
i , tyz

i , tzx
i and scalingsi . See Figure 1 for an illustration of these basis

vectors. The basis vectors are collected in a matrix

P = [x1,y1,z1, . . . ,xm,ym,zm, . . . ], (2)

used to allow multiscale preconditioning. By changing basis according to

Ãs = PTAsP, x = Px̃, b̃ = PTb (3)

we obtainÃsx̃ = b̃, whereAs is the Shur complement matrix for the cam-
era part ofJTJ (for details, see the paper). We can now also apply standard
preconditioning to the matrix̃As.

The synthetic as well as real experiments we have performed so far
both indicate that vastly improved convergence rates can be obtained by
iterating on a multiscale representation ofAs. However, the results are so
far preliminary and we have yet to show reliable numbers that demonstrate
state of the art performance compared to existing implementations of the
Levenberg-Marquardt method. See Figure 1 (bottom) for results from a
synthetic experiment. The conclusion is that multiscale representations
may well have the possibility to become a very effective tool for large
scale bundle adjustment, but that more investigation is needed in order to
exploit these results and to obtain efficient algorithms.
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