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The Computer Vision community has devoted a great interest to the
SfM (Structure-from-Motion) problem for decades. Recovering the 3D
scene structure and the camera motion is an important step in a wide
range of applications, such as visual SLAM (Simultaneous Localization
And Mapping, e.g. [1, 5]). This technique recovers the structure of the
scene and simultaneously localizes the camera in the generated map. An
optimization is performed over a set of parameters that represents the 3D
structure (3D primitives) and the cameras. Classical minimization algo-
rithms, such as Levenberg-Marquardt, are used to minimize the reprojec-
tion error. It calculates a direction in the parameter space, but does not
necessarily provide the best magnitude, called the step length. The aim of
Line Search techniques [2, 4, 6] is to find an efficient displacement length
for a given direction.

We propose a new Line Search technique that we call ALS (Alge-
braic Line Search). It can easily be plugged in existing bundle adjustment
implementations.

The 3D reconstruction problem aims at recovering a model of all cam-
era poses and all the m 3D points Q j=1..m of a scene from multiple views.
Camera projections are written as 3× 4 matrices Pi=1..n and can be de-
composed in some metric coordinate frame, as Pi = Ki(Ri|ti), where Ki
encodes the intrinsic parameters and (Ri, ti) represents the orientation and
position of the camera in a world coordinate frame. Bundle Adjustment
(BA) is based on nonlinear least squares minimization in order to refine
the initial structure and camera motion. The objective function to refine
is generally is the reprojection error ε(x). This function is the sum of
the squares of the distance between 2D observations (measurements in
the images) and reprojections: ε(x) = ∑i, j vi j d2 (qi j,PiQ j

)
, where qi j

is the observation of point Q j in image (camera) Pi, and vi j = 1 if the
observation exists and 0 otherwise.

The algebraic distance d̃ is defined by: d̃(q,q′) = ‖S[q]×q′‖ , with

S =
(

1 0 0
0 1 0

)
and [q]× is the matrix representation of the vector cross

product. It is agreed [3] that under an appropriate normalization, cost
functions based on this distance give satisfying results, even if this dis-
tance is not geometrically or statistically meaningful. The algebraic cost
function is defined as:

ε̃(x) = ∑
i, j

vi j
∥∥S[qi j]×PiQ j

∥∥2
. (1)

Our idea is not to use the algebraic distance as the cost function of
a bundle adjustment: we keep the basic geometric distance for this. Our
proposition is however to use the algebraic distance to find an efficient
step length, in a Line Search manner. We call this technique ALS (Alge-
braic Line Search).

We investigate two different approaches for ALS. The Global ALS is
a Line Search technique that aims at finding a global efficient step length
for the whole parameter set (camera and scene structure). In a different
way, the Two-way ALS determines two distinct step lengths, one for the
cameras and the other for the scene structure.

Global Algebraic Line Search (G-ALS)

Once the optimization provides us with a step direction δ
> =

(δ>P1
, · · · ,δ>Pn

,δ>Q1
, · · · ,δ>Qm

), with δ Pi = vect(∆Pi), we want to determine
the step length α . Considering the update rule, the algebraic reprojection
error (1) becomes a function of α:

ε̃(x+αδ ) = ∑
i, j

vi j
∥∥S[qi j]×(Pi +α∆Pi)(Q j +αδ Q j )

∥∥2
. (2)

Since we search for the best step length α∗ that minimizes ε̃(x) in the pre-
viously computed direction δ , the optimums are the real positive solutions

of ∂ ε̃

∂α
= 0, given by inspecting the roots of the polynomial:

∂ ε̃(x+αδ )
∂α

= aα
3 +bα

2 + cα +d (3)

Two-way Algebraic Line Search (T-ALS)
Since there are two different types of parameters to refine in common

bundle adjustment (the scene structure and the cameras), it sounds attrac-
tive to dissociate the step length for each kind of parameters since they
do not share the same units. We propose the Two-way ALS that finds
two step lengths α∗P and α∗Q, respectively for camera and scene structure
displacements:

min
αP,αQ

∑
i, j

vi j

∥∥∥S
[
qi j
]
× (Pi +αP∆Pi)

(
Q j +αQδ Q j

)∥∥∥2
. (4)

The search for the global minimum (α∗P,α∗Q) can be performed in a fast
way. Nullifying the partial derivatives of equation (4) with respect to αP
and αQ gives a system of two polynomials in αP and αQ which can be
solved using Gröbner basis so that α∗P is the root of a degree 5 polynomial.
α∗Q is then deduced from α∗P.

One drawback of the algebraic distance is that this error is only an
approximation of the Euclidean distance since, so we use the Wolfe Con-
ditions to select efficient step length.
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Figure 1: Results of a video sequence (a). Figures (b) and (c) show the
evolution of the RMS (pixels) over time (top) and iterations (bottom), for
30 cameras (b) and 6 cameras (c).

The method can be applied to any problem minimizing a geometric
error, such as camera pose estimation and point triangulation. Results
showed that the further away the initial solution is from the optimal one,
the greater the improvement provided by ALS (typically for RMS > 1
pixel).
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