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When classifying and segmenting images, some categories may be pos-
sible to identify based on global properties of the image (i.e., features
extracted at a large scale), whereas others will depend on highly local
information (i.e., features extracted at a fine scale); in some cases, these
features may be very different, and may even provide conflicting informa-
tion. In this paper, we aim to address this issue by using a graphical model
which combines features extracted at multiple scales, and learns the ex-
tent to which the features provide consistent information across scales.

The nodes of our graphical model are shown in Figure 1. In this
image, features are extracted at four scales, with the scale halving at each
level. Edges in our graphical model are formed by connecting nodes at
different scales: we connect two nodes precisely when the corresponding
image regions overlap at two adjacent scales, so that our graphical model
is tree-structured (in this case, a quad-tree).

Our image features are based on those from [1], in which image-level,
region-level, and patch-level classifiers are proposed. We enforce that
the labeling given to the image regions is consistent across scales, i.e.,
a region labeled as ‘cat’ at one scale should not be labeled as ‘dog’ at
another scale. We enforce these constraints using the hierarchy shown in
Figure 2, though in principle more complex hierarchies could be used.

The tree-structured nature of our model allows us to perform efficient
and exact inference using max-sum belief propagation. Our method has
running time and memory requirements of O(|M ||H |2), where M is the
set of image regions, and H is the set of classes. This gives our model an
advantage over grid-structured models (for example), in which inference
is typically approximate. A consequence of using a tree-structured model
is that we are no longer directly enforcing neighbourhood constraints;
instead, these are indirectly enforced through our hierarchy.

We train our method using structured learning, in the framework of
[4]. This requires only that we are able to solve the inference problem,
and that our loss function decomposes over the cliques in our model (i.e.,
the edges); this is certainly true of the Hamming loss, i.e., the proportion
of incorrectly labelled regions.

Our method is evaluated on the PASCAL VOC2007 and VOC2008
datasets [2, 3] (the 2008 data was used for training, the 2007 data for
testing). In Table 1 we show the performance of our method compared
to a baseline (which is based on the work of [1]), and a non-learning
approach (which assigns equal weights to all features). In Table 2, we
see the contribution to the performance made at each image level. Our
method seems to give the most substantial benefit at higher levels (i.e.,
smaller scales); in contrast, first-order methods become unreliable when
using highly local features. We see that if structured learning is applied,
we benefit substantially from the use of hierarchical constraints.
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Figure 1: Nodes on the first four levels of our model. The correct la-
bels (used for training our model) are shown on the image using different
colours.
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Figure 2: The hierarchy used in our paper. At the top of the hierarchy, we
simply state that a region may contain multiple classes; at the bottom we
state that a region does not contain any class. Class labels are those from
[2, 3].

Training Validation Testing
Baseline (see [1]) 0.272 (0.004) 0.273 (0.004) 0.233 (0.003)
Non-learning 0.235 (0.006) 0.224 (0.005) 0.233 (0.004)
Learning 0.460 (0.006) 0.456 (0.006) 0.374 (0.004)

Table 1: The performance of our method on the training and validation
datasets (VOC2008), and on the testing dataset (VOC2007).

Level 0 Level 1 Level 2 Level 3
Baseline (see [1]) 0.342 0.214 0.232 0.163
Non-learning 0.426 0.272 0.137 0.112
Learning 0.413 0.307 0.349 0.444

Table 2: The contribution to the performance made at each image level
(on the test set).


