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Abstract

This paper presents a framework for hierarchical 3D articulated human body-part
tracking and action classification. We introduce a Hierarchical Annealing Particle Filter
(H-APF) algorithm, which applies nonlinear dimensionality reduction of the high di-
mensional data space to the low dimensional latent spaces combined with the dynamic
motion model and the Hierarchical Human Body Model. The improved annealing ap-
proach is used for the propagation between different body models and sequential frames.
The tracking algorithm generates trajectories in the latent spaces, which provide low di-
mensional representations of body poses, observed during the motion. These trajectories
are used to classify human motions. The tracking and classification algorithms were
checked on HumanEvaI, HumanEvaII, and other datasets, involving more complicated
motion types and transitions and proved to be effective and robust. The comparison to
other methods and the error calculations are provided.

1 Introduction
Human body pose tracking is a challenging task for several reasons. The large variety of
poses and high dimensionality of the human model complicates the examination of the en-
tire subject and makes it harder to detect each body part separately. However, the poses
can be presented in a low dimensional space using the dimensionality reduction techniques.
Such a reduction improves the tracker’s robustness, ability to recover from temporary target
loss, and the computational effectiveness. There exist several possible strategies for reduc-
ing the dimensionality. Firstly, it is possible to restrict the range of movement of the subject
[12]. However, due to the restricting assumptions, the resulting trackers are not capable of
tracking general human poses. Another approach is to learn low-dimensional latent variable
models [20] using Isomap [17]. However, methods like Isomap and locally linear embedding
(LLE) [13] do not provide a mapping between the latent space and the data space. Urtasun
et al. [18] proposed to use a form of probabilistic dimensionality reduction by GPDM [19]
to formulate the tracking as a nonlinear least-squares optimization problem. Andriluka et
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al. [2] use Hierarchical Gaussian Process Latent Variable Model HGPLVM to model prior
on possible articulations and temporal coherency within a walking cycle. Raskin et al. [11]
introduced Gaussian Process Annealed Particle Filter (GPAPF), which uses GPDM to con-
struct a latent space that describes poses and the tracking is performed in this latent space.
Nevertheless, such a reduction usually allows tracking and detection only of the poses simi-
lar to those used for the learning process.

In this paper we introduce a Hierarchical Annealing Particle Filter (H-APF) tracker
which exploits the Hierarchical Human Body Model in order to achieve accurate body part
estimates. We apply a nonlinear dimensionality reduction using the Hierarchical Gaussian
Process Latent Variable Model (HGPLVM) [6] and the Annealing Particle Filter (APF) [4] is
used for the propagation between the sequential frames. A hierarchical model of the human
body expresses conditional dependencies between the body parts and allows us to capture
properties of separate parts. The human body model consists of two independent parts: one
containing information about 3D location and orientation of the body and the other describ-
ing the articulation of the body. The articulation is represented as a hierarchy of body parts.
The method uses previously observed poses from various motion types to generate mapping
functions from the low-dimensional latent spaces to the data spaces that describe the poses.
The tracking algorithm consists of two stages. First, the particles are generated in the latent
space and are transformed to the data space using the learned mapping functions. Second,
rotation and translation parameters are added to obtain valid poses. Finally, the likelihood
function is calculated in order to evaluate how well these poses match the image. The result-
ing tracker estimates the locations in the latent spaces that represent poses with the highest
likelihood.

During the last decade many different methods for behavior recognition and classifica-
tion of human actions have been proposed. The popular methods include Hidden Markov
Models (HMM), Finite State Automata (FSA), and context-free grammar (SCFG) etc. Sato
et al. [14] presented a method to use extraction of human trajectory patterns that identify the
interactions. Mori et al. [7] use hierarchies in the actions and Continuous HMM to recognize
everyday gestures. S. Park et al. [10] proposed a method using a nearest neighbor classifier
for the recognition of two-person interactions such as hand-shaking, pointing, and standing
hand-in-hand. Hongeng et al. [5] proposed probabilistic finite state automata for recogni-
tion of a sequential occurrence of several scenarios. J. Park et al. [9] presented a recognition
method that combines model-based tracking and deterministic finite state automata. Niebles
and Li [8] use hierarchical representation of a human body model, that is used for the action
categorization.

Our method performs the action classification in the latent spaces, produced by HG-
PLVM. A pose estimated on each frame corresponds to a coordinate in the latent space.
Therefore, an action is represented by a curve in this latent space. The classification of the
motion is based on the comparison of the sequences of latent coordinates that the tracker pro-
duces to the sequences that represent different actions (we denote such sequences as models).
The modified Frèchet distance [1] is used in order to perform the comparison. This approach
allows for the introduction of actions different from those used for the learning of the latent
spaces by exploiting the model that represents it. We also show that the action classification,
when performed in the latent space, is robust and has a high accuracy rate.
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2 Hierarchical Annealing Particle Filter

2.1 Motivation: From GPAPF to H-APF
As mentioned many researchers use dimensionality reduction of the body pose in order to
achieve robust and computationally effective trackers. Recently, Raskin et al. [11] suggested
using dimensionality reduction of the human poses space. They introduced Gaussian Pro-
cess Annealed Particle Filter (GPAPF). According to this method a latent space is generated
by a nonlinear dimensionality reduction (using Gaussian Process Dynamic Model (GPDM))
of the space of previously observed poses from different motion types, such as walking, run-
ning, punching and kicking.

The drawback of the GPAPF algorithm is that a latent space describes only the poses
that resemble those used in the learning process. However, if a person performs a new
movement which differs from those already learned, then the new poses will be represented
less accurately by the latent space. Therefore, after experimenting with the GPAPF algorithm
we concluded that it is hardly possible to improve the quality of the results achieved with
GPAPF. Specifically, when an action contains several motion types or previously unseen
motion the error rate was high. The other concern is the ability of GPAPF to track the body
parts during the transition between different motion types. Even if both motions were used
in the learning to produce a common latent space, the error rate during the transition phase
was relatively high.

2.2 Learning
The commonly-used human body model Γ consists of two statistically independent sub-
spaces Γ = {Λ,Ω}. The first subspace Λ⊆ IR6 describes the body’s 3D location: the rotation
and the translation. The second one Ω⊆ IR25 describes the actual pose, which is represented
by the angles between different body parts (see. [3] for more details about the human body
model). We define a Hierarchical Human Body Model such as that shown in Figure 1. We
denote the number of the hierarchy layers as H.

Figure 1: A hierarchical model of the human body (left) and the corresponding latent spaces
(right). Each latent space corresponds to a set of body parts and is learned for five differ-
ent motion types: hand waving(red), lifting an object (blue), kicking (green), sitting down
(yellow), and punching (cyan).

Let us define Ωh,l ⊂ Ω as the l-th subspace in hierarchy level h. For instance, on the
hierarchy depicted by Figure 1, the Θ3,2 stands for the subspace that describes the right
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leg. For each Ωh,l the HGPLVM algorithm constructs a latent space Θh,l and the mapping
function ℘(h,l) that maps this latent space to the partial data space Ωh,l .

℘
(h,l) : Θh,l 7→Ωh,l (1)

Let us also define θh,l ∈ Θh,l as the latent coordinate in the l-th latent space in the h-th
hierarchy layer. ωh,l ∈ Ωh,l is the partial data vector that corresponds to θh,l . Applying
Formula 1 we have ωh,l =℘(h,l) (θh,l

)
.

An important property of a hierarchical model is that Ωh,l is a subset of some Ωh−1,k
in the higher layer of the hierarchy. In other words, for any hierarchy level h ∈ [2,H] and
for any subspace l ∈ [1,Lh] in this layer, there always exists a subspace l̂ in the hierarchy
level h−1 ∈ [1,H−1], such that Ωh,l ⊂Ωh−1,l̂ (here l̂ is the index of the parent node in the
hierarchy tree).

Additional mapping functions that are learned by the HGPLVM are the mapping func-
tion between the latent spaces, that correspond to the subspaces, which are connected in the
hierarchy tree φ (h,l) : Ωh,l̂ 7→Ωh+1,l .

Finally, λh,l,n ∈ Λ, ωh,l,n ∈Ωh,l and θh,l,n ∈ Θh,l denote the location, full data space (full
pose) vector and latent coordinates in hierarchy layer h on the latent space l on the frame n.

2.3 Tracking algorithm
In this section we present a Hierarchical Annealing Particle Filter (H-APF) for 3D body part
tracking. A H-APF run is performed at frame n using image-observations yn. These obser-
vations can be a data from a single camera or, as shown in Section 3, from several cameras.
In this section we follow the notations used in [4].

The model configuration on the frame n and hierarchy layer h on the latent space l con-
tains translation, rotation parameters, latent coordinates and the full data space vectors:

s(i)
h,l,n = {λ

(i)
h,l,n;ω

(i)
h,l,n;θ

(i)
h,l,n} (2)

The tracker state is represented by a set of weighted particles:

Sπ
h,l,n = {(s(0)

h,l,n,π
(0)
h,l,n), ...,(s

(N)
h,l,n,π

(N)
h,l,n)} (3)

where s(i)
h,l,n stands for the model configuration and π

(i)
h,l,n corresponds to a particle weight.

The un-weighted set of particles is denoted by

Sh,l,n = {s(0)
h,l,n, ...,s

(N)
h,l,n} (4)

The tracking algorithm consists of two stages. The first is the generation of new particles
in the latent space. In the second stage a corresponding mapping function is applied that
transforms latent coordinates to the data space. After the transformation, the translation and
rotation parameters are added and the 31-dimensional vectors are constructed. These vectors
represent a valid poses, which are projected to the cameras in order to estimate the likelihood.
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Each H-APF run has the following steps:

Step 1-Initialization. For every frame the run is started at layer h = 1 and is initialized

by a set of un-weighted particles S1,1,n = {s(i)
1,1,n}

Np
i=1 =

{
λ

(i)
1,1,n;ω

(i)
1,1,n;θ

(i)
1,1,n

}Np

i=1
.

Step 2. The weight of each particle is calculated:π(i)
h,l,n ∝ wm

(
yn,s

(i)
h,l,n

)
= wm

(
yn,λ

(i)
h,l,n,ω

(i)
h,l,n

)
,

where wm is the weighting function suggested by Deutscher and Reid [4]. The weights are
normalized so that ∑

Np
i=1 π

(i)
n = 1.

Step 3. N particles are drawn randomly with replacements and with a probability equal
to their weight π

(i)
h,l,n. For every latent space l in the hierarchy level h + 1 the particle

s( j)
h+1,l,n is produced using the jth chosen particle s( j)

h,l̂,n
(l̂ is the index of the parent node

in the hierarchy tree): λ
( j)
h+1,l,n = λ

( j)
h,l̂,n

+ Bλh+1
and θ

( j)
h+1,l,n = φ(θ ( j)

h,l̂,n
) + Bθh,l̂

, where Bλh

and Bθh,l are multivariate Gaussian random variables with covariances and Σλh
and Σθh,l

correspondingly and mean 0. In order to construct a full pose vector ω
( j)
h+1,l,n is initial-

ized with the ω
( j)
h,l̂,n

: ω
( j)
h+1,l,n = ω

( j)
h,l̂,n

and then updated at the coordinates defined by Ωh+1,l :

(ω( j)
h+1,l,n)|Ωh+1,l = ℘h+1,l

(
θ

( j)
h+1,l,n

)
(The notation a|B stands for the coordinates of vector

a ∈ A defined by the subspace B ⊆ A.) The idea is to use a pose that was estimated using
the higher hierarchy layer, with small variations in the coordinates described by the Ωh+1,l
subspace. Finally, the new particle for the latent space l in the hierarchy level h + 1 is
s( j)

h+1,l,n = {λ
( j)
h+1,l,n;ω

( j)
h+1,l,n;θ

( j)
h+1,l,n}

Step 4. The sets Sh+1,l,n have now been produced which can be used to initialize the
layer h+1. The process is repeated until we arrive at the H-th layer.

Step 5. The jth chosen particle s( j)
H,l,n in every latent space l in the lowest hierarchy

level is used to produce s( j)
1,1,n+1 un-weighted particle set for the next observation: λ

( j)
1,1,n+1 =

1
LH

∑
LH
l=1 λ

( j)
H,l,n and θ1,1,n+1 =℘

−1
1,1

(
ω( j)

)
, where ω( j) is calculated using

f or1≤ l ≤ LH do ω
( j)|ΩH,l = ω

( j)
H,l,n|ΩH,l (5)

Here LH denotes the number of subspaces in the last hierarchy layer H. Finally, s( j)
1,1,n+1 =

{λ
( j)
1,1,n+1;ω( j);θ

( j)
1,1,n+1}.

Step 6. The final configuration can be calculated using the following method: λ
(opt)
n =

1
LH

∑
LH
l=1 ∑

N
j=1 λ

( j)
H,l,nπ( j) and ω

(opt)
n = ∑

N
j=1 ω( j)π( j), where π( j) ∝ wm

(
yn,λ

(opt)
n ,ω( j)

)
is the

normalized weight of the selected particles so that ∑
Np
i=1 π(i) = 1 and ω( j) is calculated as in

step 5.
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2.4 Action Classification
The classification of the actions is based on the comparison of the predefined motion patterns
and the sequences of the poses detected by the tracker during a performed motion. We use
Frèchet distance [1] in order to determine the class of the motion, such as walking, kicking,
waving. The Frèchet distance between two curves measures the similarity of the curves tak-
ing their direction into consideration. This method is quite tolerant of position errors. While
in general it is hard to calculate the Frèchet distance, Alt et. al [1] have suggested an efficient
algorithm to calculate it between two piecewise linear curves.

We define a polygonal curve PE as a continuous and piecewise-linear curve made of
segments connecting vertices E = {v[0], ...,v[n]}. The curve can be parameterized with a pa-
rameter α ∈ [0,n], where PE (α) refers to a given position on the curve, with PE (0) denotes
v[0] and PE (n) denotes v[n]. The distance between two curves PE1 and PE2 is defined as

F
(
PE1 ,PE2

)
= min

α1,2:[0,1]→[0,n1,2]

{
max

{
‖PE1 (α1 (t))−PE2 (α2 (t))‖2 : t ∈ [0,1]

}}
(6)

where α1 (t) and α2 (t) represent sets of continuous and increasing functions with α1 (0) = 0,
α1 (1) = n1, α2 (0) = 0, α2 (1) = n2.

Suppose there are K different motion types. Each type k is represented by a model Mk,
which is a collection of sequences of the lk +1 latent coordinates on each latent space in every
hierarchy layer. We denote a sequence that corresponds to the model Mk on the l-th latent
space in the hierarchy level h as Mh,l,k =

{
θ

Mk
(h,l)[0], ...,θ Mk

(h,l)[mk]
}

. For a frame sequence
Y = {y0, ...,ym} the H-APF tracker generates a sequence of latent coordinates for each latent
space. Such a sequence of the coordinates on the l-th latent space in the hierarchy level h is
denoted as ϒh,l =

{
θ ϒ

(h,l)[0], ...,θ ϒ

(h,l)[m]
}

. Now, using 6, we can compare the model and the
sequence for each latent space. Finally, the cumulative distance is calculated:

d(Y,Mk) =
H

∑
h=1

Lh

∑
l=1

F
(
ϒh,l ,Mh,l,k

)
(7)

where H is the depth of hierarchy tree and Lh is the number of the latent spaces in the layer
h of the hierarchy. The model with the smallest distance is chosen to represent the type of
the action.

3 Results

3.1 Tracking
We tested H-APF tracker using the HumanEvaI and HumanEvaII datasets [15]. The se-
quences contain different activities, such as walking, boxing,and jogging, which were cap-
tured by several (four) synchronized and calibrated cameras. The sequences were captured
using the MoCap system that provides the correct 3D locations of the body joints, such as
shoulders and knees. This information is used for an evaluation of the results and a com-
parison to other tracking algorithms. The error is calculated, based on a comparison of the
tracker’s output to the ground truth, using the average distance in millimeters between 3-D
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joint locations [3].

The first sequence that we used contains a single person, walking in a circle. The video
was captured at the frame rate of 60 fps and then down-sampled to 15 fps. We compared the
results produced by APF (implemented by A. Balan for [3]), GPAPF and H-APF trackers.
For APF and GPAPF algorithms we used five layers with 100 particles in each; for H-APF
we used a hierarchy as on Figure 1 with 100 particles in each layer. Figure 3.a shows the
error graphs, produced by APF (green), the GPAPF tracker (blue) and the H-APF tracker
(red) trackers.

Next we trained HGPLVM with several different motion types. We used this latent space
in order to track the body parts on the videos from the HumanEvaI and HumanEvaII datasets.
Figure 2 shows the result of the tracking of the HumanEvaII(S2) dataset which combines
three different behaviors: walking, jogging and balancing. Figure 3.b-d presents the errors
for HumanEvaI(S1, walking1, frames 6-590)(top), HumanEvaII(S2, frames 1-1202)(middle)
and HumanEvaII(S4, frames 2-1258)(bottom). Finally, Table 3.1 compares the average error
for these sequences produced by APF, GPAPF and H-APF algorithms. We have also cre-

frame 50 frame 230 frame 640 frame 700 frame 800
Figure 2: Tracking results of H-APF tracker. Sample frames from the combo1 sequence
from HumanEvaII(S2) dataset.

Figure 3: The errors produced by APF tracker (marked by green line), GPAPF tracker
(marked by blue line) and H-APF tracker (marked by red line). The errors for (a) the
walking sequence captured at 15 fps; (b) HumanEvaI(S1, walking1, frames 6-590); (c) Hu-
manEvaII(S2, frames 1-1202)(middle) and (d) HumanEvaII(S4, frames 2-1258)(bottom).

ated a dataset with several different actions performed by different actors. Figure 4 shows the
result of the of H-APF tracker on running (top), kicking (middle), and object lifting (bottom)
sequences from dataset.
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Dataset HumanEvaI HumanEvaII HumanEvaII
Sequence S1 S2 S4
APF 95.4 163.8 172.1
GPAPF 86.3 86.6 89.0
H-APF 75.4 75.2 81.8

Table 1: The average error for these sequences produced by APF, GPAPF and H-APF. The
error measures the average distance in millimeters between 3-D joint locations.

Figure 4: Tracking results of H-APF tracker. Sample frames from the running (top), kicking
(middle), and object lifting (bottom) sequences from dataset created in our lab.

As we mentioned above, H-APF allows dealing with transitions between motions in a
much more natural fashion. This is one of the reasons why we see the improvement in track-
ing results for the datasets involving several different motion types, such as HumanEvaII.
Figure 5 shows the sample frames from HumanEvaII S1 dataset, which involves three dif-
ferent actions. The subject starts with walking, then continues with jogging and ends with
balancing. The Figure shows the transition from jogging to balancing. As it is shown on
Figure 3 there is no distinguishable peaks on the error graph during the transition, which im-
plies that the tracker is capable of maintaining stable results during the motion type change.

3.2 Motion Classification
For the action classification testing we used the dataset, produced in our lab. Due to the ease
of classification of HumanEvaI and HumanEvaII, we do not provide the results on these sets.

For the first experiment we used three different activities: (1) lifting an object, kicking
with (2) the left and (3) the right leg. In the second experiment we used five different activ-
ities: (1) hand waving, (2) lifting an object, (3) kicking, (4) sitting down, and (5) punching.
For each activity five different sequences were captured. A cross-validation procedure was
applied: for each motion type one sequence was used in order to construct the latent space
and define the model of the motion type and the rest were used for evaluation. Figure 6
shows the trajectories produced by the trackers for the sitting down action projected on dif-
ferent latent spaces from different hierarchy levels. The green line represents the correct
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frame 735 frame 755 frame 775 frame 795 frame 815

frame 835 frame 855 frame 875 frame 895 frame 915
Figure 5: Sample frames showing the motion type transition (from jogging to balancing) in
HumanEvaII(S4) dataset.

model (a model of sitting down action), the red lines represent the incorrect models (models
of waving, punching, kicking and picking an object actions), and the colored lines represent
the trajectories produced by the tracker. The crosses on the colored lines represent the actual
latent locations, that were estimated by the H-APF tracker.

(a) (b) (c)
Figure 6: Tracking trajectories of sitting down action projected to different latent spaces:
(a)hierarchy level 1, latent space 1; (b) hierarchy level 2, latent space 3; (c)hierarchy level 3,
latent space 5. The green line represents the correct model (a model of sitting down action),
the red lines represent the incorrect models (models of waving, punching, kicking and picking
an object actions), and the colored lines represent the trajectories produced by the tracker.
The crosses on the colored lines represent the actual latent locations, that were estimated by
the H-APF tracker.

For the first set we were able to achieve perfect classification results. This is due to
clear differences between the models of the different motions in the latent space. In the
second experiment the models are less distinguishable, which makes the classification task
harder. Table 2 shows the results of the classification for the actions from the second dataset.
The lower classification rates of actions involving the hand gestures can be explained by the
native similarity of the actions. The poor classification rates of sitting down and object lifting
actions are due to the high self occlusions, which caused the tracker to produce less accurate
results.

4 Conclusion and Future Work
In this paper we introduced an 3D human body part tracker that uses HGPLVM to improve
the ability of the annealed particle filter to track the object in a high-dimensional space. The
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Table 2: The accuracies of the classification, using the combined approach, for 5 different ac-
tivities: hand waving, object lifting, kicking, sitting down, and punching. The rows represent
the correct motion type; the columns represent the classification results.

Hand waving Object lifting Kicking Sitting down Punching
Hand waving 17 0 0 0 3
Object lifting 0 18 0 2 0
Kicking 0 0 20 0 0
Sitting down 0 3 0 17 0
Punching 2 0 0 0 18

use of hierarchy allows for a better detection of body part positions and can thus perform
more accurate tracking. We have also presented an algorithm for human motion classifica-
tion using a hierarchy of low-dimensional latent spaces.

Currently the classification algorithm uses all the latent space in the hierarchy equally.
However, some actions are defined only by a movement of certain body parts, and are com-
pletely independent of the articulations of the other parts. For instance, running or kicking
are strictly defined by leg movements and are independent of the position of the head. Using
this information may not only improve the ability to recognize the type of action but also to
detect irregularities, such as walking with raised arms.

Another interesting problem is the construction of latent spaces for multiple actions.
Typically one wants to have consistent smooth structure in the latent space for a given motion
to ensure that Gaussian process can easily be used to track the motion. When a few actions
are used for training the resulting latent spaces consist of smooth curves. However, using 5
or more different motion types usually do not sustain the property. We plan to address this
in our future research.
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