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Abstract

We propose a novel probabilistic approach to detect defects in digitized archive film,
by combining temporal and spatial information across a number of frames. An HMM is
trained for normal observation sequences and then applied within a framework to detect
defective pixels by examining each new observation sequence and its subformations via a
leave-one-out process. A two-stage false alarm elimination process is then applied on the
resulting defect maps, comprising MRF modelling and localised feature tracking, which
impose spatial and temporal constraints respectively. The proposed method is compared
against state-of-the-art and industry-standard methods to demonstrate its superior detec-
tion rate.

1 Introduction
Restoration of old, archived films is of great importance to preserve the originality of the
medium in terms of "a historical record" as well as the means to quality improvement for
reproduction purposes. Helped by the development of mass-capacity digital storage tech-
nologies, most filmed footage, whether recently shot or historical, requires quality control
and assessment in digital form before it gets broadcast or stored in a digital warehouse.
This has resulted in growing industry interest in developing automated quality control for
films and videos with several recent academic and industry collaborations in projects such as
BRAVA (Broadcast Restoration of Archives by Video Analysis, 1999) [3] and PrestoSpace
(Preservation towards Storage and access Standardised Practices for Audiovisual Contents
in Europe, 2004) [14].

A variety of defects may occur in archived films. These were categorised in Project
BRAVA [3] and include dirt, line scratches, brightness variation, and frame vibration amongst
many others. The most common defect types are dirt and scratches which usually appear as
black and white sparkles or regions in one or more frames. However, no common size or
shape features can be deduced from these as their appearance is mostly random, caused by
physical damage from inappropriate storage and handling [16]. Here, we shall refer to all
such discontinuities, which appear across one or more frames, as dirt and sparkle, including
salt and pepper like noise, blotches, and scratches.

In this paper, unlike previous methods, we examine longer temporal information at each
pixel location and its neighbouring space. We assume the appearance of a defective pixel as
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a stochastic pixel-change event and use HMM and MRF to model the temporal and spatial
information respectively to obtain better results with fewer false detections. First, an HMM
based Archive FIlm Defect detection method (HAFID) is presented. We train an HMM on
normal observation sequences and then apply it within a framework to detect defective pixels
by examining each new observation sequence and its subformations via a leave-one-out pro-
cess. The resulting defect map from HAFID encapsulates the defects very well, but suffers
from many false alarms. We therefore extend HAFID to add a two-stage false alarm elimina-
tion process and refer to the entire method as HAFID-STC (Spatial and Temporal Continuity
analysis). First, the defect map from HAFID is modeled with a MRF to enforce spatial
continuity constraints and then the pyramidal Lucas-Kanade feature tracker [2] is applied to
impose temporal correlation constraints. We shall outline a comparison of HAFID-STC (and
HAFID) against four commonly used and/or state-of-the-art techniques [8, 10, 12, 18]1. The
post defect detection stage of film restoration will be dealt with in our future work.

2 Background
Archive film defect detection methods can be broadly categorised into filter-based and model-
based methods. Probably the earliest work on filter-based archive film defect detection is the
BBC’s hardware-based dirt and sparkle detector [21]. A binary defect map was generated
by examining if the temporal forward and backward intensity differences are above a certain
threshold. The Spike Detection Index (SDIp) [10] is another example of a filter like defect
detector, which improved Storey’s algorithm [21] by using motion compensated pixel val-
ues while requiring the forward and backward intensity differences to have the same sign.
Nadenau and Mitra [13] also extended the work in [21] to use six pixel values from motion
compensated temporal neighbours as {vi|1≤ i≤ 6}. The algorithm sorted the six values as
{si|1≤ i≤ 6} and calculated the following three differences:

d1 = |s1− s6|; d2 = |s2− s5|; d3 = |s3− s4| (1)

A defect was then marked if d1 > τ1, d2 > τ2 and d3 > τ3 where (τi|i = 1,2,3) were thresh-
olds. Other recent work includes Ren and Vlachos [17, 18] who created a confidence func-
tion of intensity differences to measure the possibility of a pixel being degraded. Image
segmentation and local correlation information was also included to help eliminate false
alarms. In [6, 7], Marshall and his co-workers dealt with small defects (within 7×7 win-
dows) through direct restoration by using hierarchical soft morphological filters.

Model-based film defect detectors include works based on MRFs [5] where the central
idea is to predict the intensity value of the target pixel by examining the intensity values of
pixels in the neighbouring frames, e.g. [4, 12]. In [9, 11] a series of spatial-temporal Au-
toregressive (AR) models for defect detection were proposed, combined with restoration. In
another AR model based work [20], instead of combining intensity values from both previ-
ous and next frames, Roosmalen interpolated the current pixel by using intensities from one
direction only (either forward or backward) whose values were close to the predictions of his
AR model. Kokaram [8] also developed a Bayesian framework to model noise and scratches
while performing motion correction. Three binary variables were used for each pixel to mark
if the pixel is degraded, forward occluded or backward occluded. These variables, together
with restored image values and motion vectors, were defined as unknowns. Given the pixel

1Note although [10] is from 1992, it is still one of the most regularly used methods in industry.
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values of degraded frames and initial motion estimations, the method applied the ICM [1]
algorithm to solve these unknowns via an iterative procedure.

Traditionally, previous archive film defect detection methods have assumed defects only
appear in single frames. This assumption is then followed by the practice of investigating
the information from one or two previous and successive frames to determine if the current
frame is suffering from degradation, e.g. the SDIp [10] and MRF based [11] detectors. The
approach here is to look at a number of frames before and after the current frame. This
allows us to examine the statistical changes in pixel transitions for a longer range to help
determine defects more accurately. This will clearly incur extra computational costs, but this
is nonetheless affordable for offline detection of defects in archival film. Indeed, we will
show in Section 5 that our proposed method is computationally extremely competitive.

3 HMM based defect detection
In previous archive film defect detection methods, a common dilemma has been how to in-
crease correct detection rates while reducing the number of false alarms. Given the somewhat
random nature of the occurrence of defects, rather than attempting to model defects, we build
a model of how normal a sequence of pixels is. This is in effect a form of novelty detection
since any pixel sequences deviating from this normal model can be marked as a possible
defect. A pixel x would normally remain in one state and undergo a transition only when
the intensity value at this location changes by a certain amount. For example, a constant
state sequence may be linked to a temporal pixel sequence at a static background, whereas
a single frame based defect would cause sudden state transitions at that pixel location. This
temporal change of states (at a pixel location) can be considered as a Markov chain. Given
some observation sequences, we are then able to model normal pixel sequences (i.e. state
transitions) using an HMM.

To begin with, we train a single HMM, θ , for normal image pixel sequences, which is
then applied in the testing stage to compute the likelihood of a new sequence being normal. A
leave-one-out process is used to create subformations of the target observation sequence and
the quality of the centre pixel is examined based on how similar the observation sequence
without the centre pixel is relative to the mean of the subformations. This is described in
more detail in subsection 3.2.

Let It
x represent the image intensity value at pixel location x at frame t. We extract inten-

sity values at corresponding position x across frames temporally as a time series, i.e {It}x.
We specify θ as an HMM containing Q states. The transition structure of a normal sample
model is assumed to contain 5 stages. These correspond to states at a position x: background,
intermediate stage between background and foreground, foreground, intermediate stage be-
tween foreground and background, and background again (possibly different to that initially
at x). At each stage it is possible to jump by 0, 1, or 2 steps to the next state (see Figure 1).
The state sequence goes from left to right and then iterates so that it is possible to model
more complicated cases, such as multiple moving objects passing a pixel one after another.

For HMM θ , we define O = {on,n = 1, . . . ,N} as the set of observations where N is equal
to the size of the discrete observation space. Observations on could be any kind of image
features, such as intensity values, local variance and so on - in this work we use temporal
absolute intensity differences for grayscale image sequences and temporal absolute Value
differences in the HSV colour space for colour ones. Then, let {o(k)|o(k) ∈O,1≤ k ≤ K}t

x
(abbreviated to {o(k)}t

x) be the sequence of observations centred at pixel x at time t for

Citation
Citation
{Besag} 1986

Citation
Citation
{Kokaram and Rayner} 1992

Citation
Citation
{Kokaram, Morris, Fitzgerald, and Rayner} 1995



4 WANG, MIRMEHDI: HMM BASED ARCHIVE FILM DEFECT DETECTION...

Figure 1: Graphical illustration of state transitions of a 5-state HMM in our application.

length K. The observation sequences are extracted from time series {It}x within the range
[t− (K−1

2 ), t +(K−1
2 )]. All observation sequences and state sequences share the same fixed

length K at both training and detection stages. In a similar manner, let S = {sm,m = 1, . . . ,Q}
be the set of states of pixels and {s(k)|s(k) ∈ S,1≤ k ≤ K}t

x (abbreviated to {s(k)}t
x) be the

state sequence.
The parameters of our HMM model are λθ = (π,A,B): start probability π = {π(m),m =

1, . . . ,Q} which states the probability of s(1) being sm, transition probability matrix A =
{alm, l,m = 1, . . . ,Q} which states the probability of transition from current state sl to next
state sm and emission probability B = {bm(on),m = 1, . . . ,Q,n = 1, . . . ,N} which states the
probability of the observation on given the current state sm. The initial estimation of these
model parameters in our training stage is set using a random distribution.

3.1 Training stage

The training data consists of observation sequences computed from time series {It}x with
the same fixed length K. Different values of K for the optimal length of the observation
sequences were examined and K = 13 was found to give the most optimal results across our
data set. A detailed comparison of different values of K is provided in section 5. Similarly
for Q, different numbers of states and transitions ranging from 2 to 7 were experimented
with and Q = 5 provided the best overall detection result. The value Q = 5 is logically more
plausible given what it represents (as outlined above and in Figure 1). The training data
was extracted at random positions from 10 different types of archive film (5 grayscale and
5 colour image sequences). In total, 207,561 observation sequences were used for training
the HMM θ . The estimation of the parameters for our 5-state HMM was optimized by
maximizing P({o(k)}t

x|λθ ) through an iterative procedure until convergence, using Baum-
Welch’s method [15].

3.2 Detection stage

The training stage results in an HMM which models the normality of pixel sequences. In
the detection stage, we first apply this model to compute the likelihood of an observation
sequence being normal, i.e. P({o(k)}t

x|λθ ). We then measure how the likelihood of this ob-
servation sequence (arising from normal data) varies if each single observation within it was
missing, one at a time in a leave-one-out fashion. Thus, we will obtain a set of likelihoods
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for each observation sequence. The pixel at the centre of the observation sequence can then
be marked as a defect, if the likelihood of the observation sequence without the centre pixel
is larger, by a certain degree, than the average of all leave-one-out likelihoods computed on
the observation sequence. Formally, this is implemented as follows.

As in the training stage, we extract from the time series {It}x, a test observation sequence
{o(k)}t

x centred at candidate pixel x with observation o(c) for each image pixel location. For
every element in {o(k)}t

x, we define a new observation sequence indexed by h that does
not include the element o(k) itself, i.e. {o(h),h 6= k)}t

x. This will result in K observation
sequences of length K−1. We can then obtain (for each of these K observation sequences)
the likelihood of the observation sequence {o(h),h 6= k}t

x arising from normal data,

V t
x(k) = P({o(h),h 6= k)}t

x|λθ ) = ∑
m

P({o(h),h 6= k}t
x,s(k

′) = sm|λθ ) = ∑
m

αk′(m)βk′(m)

(2)
where k = 1, . . . ,K, k′ = k−1, and αy(m),βy(m),y ∈ {k,k′} are defined using the Forward-
Backward procedure [15]:

αy(m) = P({o(g),g = 1 . . .y}t
x,s(y) = sm|λθ )

βy(m) = P({o(g),g = y+1 . . .K}t
x|s(y) = sm,λθ ) (3)

with α0(m) = P({o(g),g = 2}t
x,s(2) = sm|λθ ), and β0(m) = P({o(g),g = 3 . . .K}t

x|s(2) =
sm,λθ ).

Complex situations like intensity level changes caused by motion can result in a high
value of V t

x(k). We compute the mean of all V t
x(k) values to average out the effect of such

situations.

ut
x =

V t
x(c)

1
K ∑

K
k=1 V t

x(k)
(4)

After computing ut
x for every pixel x in frame t, we obtain the likelihood map U t = {ut

x} for
all x in frame t. Finally, any pixel x is marked as a defect in a global frame binary defect map
Dt = {dt

x,d
t
x ∈ {0,1}} if ut

x > τθ where τθ is a threshold (see later for discussion of how this
threshold is determined).

4 Elimination of false alarms
The HMM model performs extremely well in locating true defects, however it is rather sen-
sitive to scene motion leading to false positives. As shown in (4), we compute the mean of
all V t

x(k) values (i.e. the likelihood of all observation sequences) to average out the effect
of intensity level transitions caused by motion. However, if the length of such transitions
compared to the entire state sequence is short, as true defects are, then false alarms arise
in or around moving regions caused by object and/or ego motion. The middle column in
Fig. 2 shows examples of applying the model with the resulting defect maps overlaid on the
original frames (shown in the first column), with the true defects marked in green and the
false alarms marked in red.

This over-detection followed by false positive elimination is preferred to under-detection
and its consequences. In order to identify and remove the false alarms, we apply a two-stage
process enforcing (a) spatial continuity and (b) temporal correlation constraints.

For those false alarms that locate around the edges, such as the red pixels around the TV
presenter’s head in the top row example, strong spatial correlation with their neighbors may
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Figure 2: Example results: (left) original images (middle) HAFID results before false alarm
elimination, and (right) after false alarm elimination.

be found. In such cases local smoothness can be exploited by modeling the defect map Dt

and the likelihood map U t with MRFs to encourage grouping defects into connected regions
while removing false positives by propagating neighbouring non-degraded pixel locations
(see subsection 4.1).

For those false alarms that make up an entire moving region, for example, the shadows
in the curtain folds in the bottom row example in Fig. 2 which leave the scene as the camera
pans and zooms in towards the girl, no relationship with other pixels may be found unless we
trace forwards and backwards on the temporal axis. The pyramidal Lucas-Kanade feature
tracker [2] is adopted here in order to impose temporal constraints (see subsection 4.2).

4.1 MRF modelling
In [12], Morris adopted an Ising model to represent the prior of what he referred to as his
detection frame (effectively an initial defect map). Gibbs sampling with annealing was then
applied to achieve the maximum a posteriori (MAP) configuration of the defect map given
the image intensities from two adjacent motion compensated image frames. Positions in his
final defect map were marked if discontinuities were shown on both adjacent frames. In
this work, in contrast to Morris’s initial zero-valued detection frame, Dt becomes our initial
defect map, effectively providing advanced-stage prior information. False alarms are then
eliminated iteratively by computing the MAP configuration of Dt given the likelihood map
U t . Thus, again unlike Morris [12], who investigated intensities at this point, we use the
original likelihood map values in U t to support the MAP estimation of Dt .

This process is implemented as follows. According to Bayes’ theorem:

P(Dt |U t) ∝ P(U t |Dt)P(Dt) (5)

The joint probability distribution of U t modelled with a MRF is equivalent to a Gibbs dis-
tribution. The function φ(·) = (·)2 is used to denote the potential for all possible connected
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2-element cliques in an 8-connected neighbourhood. For each defect position in map Dt ,
we compute the probability of a pixel having value ut

x as a function of all its spatial neigh-
bourhood (Nt

x) pixel likelihoods and (previous frame) temporal neighbour ut−1
x . So the joint

probability distribution of U t given Dt is:

P(U t |Dt) =
1

ZU t
exp(−∑

x
[α ′ ∑

x′∈Nt
x

φ(ut
x−ut

x′)+α(1−dt
x)φ(ut

x−ut−1
x )]) (6)

where ZU t is a normalizing constant and α ′,α are weights. The prior of defect map Dt is:

P(Dt) =
1

ZDt
exp(−∑

x
[−β1 ∑

x′∈Nt
x

δ (dt
x−dt

x′)+β2δ (1−dt
x)]) (7)

where δ (·) is the delta function, β1,β2 are weights and ZDt is also a normalizing constant.
Finally, combining (6) and (7), the a posteriori likelihood function is:

P(Dt |U t) ∝
1
Zt exp(−∑

x
[α(1−dt

x)(u
t
x−ut−1

x )2−β1 ∑
x′∈Nt

x

δ (dt
x−dt

x′)+β2δ (1−dt
x)]) (8)

where Zt = ZU t ZDt . Gibbs sampling with annealing [5] is applied to compute the MAP
configuration for eliminating false alarms. We set β1 = 1, as suggested in [19], and apply a
similar parameter estimation procedure as [12] for (α,β2). The rightmost, top row image of
Fig. 2 shows the TV presenter scene after false alarm elimination using this approach.

4.2 Motion tracking
Some false alarms make up an entire (but small) moving region, and hence we look for
temporal correlation constraints. We apply pyramidal Lucas-Kanade motion tracking [2] on
pixels corresponding to map Dt positions across several frames before and after the current
frame to determine the stability of the pixels being tracked. If the track fails, then the position
in Dt is left unchanged, otherwise it is eliminated as a false positive. The rightmost image
of the bottom row of Fig. 2 shows an example of a scene after false alarm elimination using
this approach.

5 Experiments
The specificity and sensitivity of the proposed method HAFID-STC is measured with refer-
ence to handlabeled groundtruth produced from 30 film sequences totalling 580 frames (note
this data set is entirely different from the training data). These include grayscale, colour, in-
door, outdoor, slow and fast motions, and real scenes and cartoons.

The ROC graph in Figure 3 shows a comparison of HAFID-STC against those of four
commonly used and/or state-of-the-art techniques: SDIp [10], Morris’s MRF based defect
detector [12] (referred to as Morris95), Ren and Vlachos’s recent work [18] (referred to
as RV07) and a Bayesian defect detection framework [8] (referred to as Kokaram04), all
briefly described earlier. These methods were all tuned for optimal performance. The results
from using only our HMM based detector HAFID (i.e. the results in Dt obtained from
thresholding U t after (4)) for different window sizes K are also shown. The correct detection
ratio (sensitivity) is plotted against the false alarm ratio (1-specificity) computed from the

Citation
Citation
{Geman and Geman} 1984

Citation
Citation
{Ripley} 1988

Citation
Citation
{Morris} 1995

Citation
Citation
{Bouguet} 2000

Citation
Citation
{Kokaram and Rayner} 1992

Citation
Citation
{Morris} 1995

Citation
Citation
{Ren and Vlachos} 2007

Citation
Citation
{Kokaram} 2004



8 WANG, MIRMEHDI: HMM BASED ARCHIVE FILM DEFECT DETECTION...

Figure 3: ROC graph shows a comparison of HAFID-STC against four well known or current
state-of-the-art techniques [8, 10, 12, 18], averaged across our entire test data set.

average from the 30 test sequences. For each algorithm, its key parameters are varied to
measure its performance for the ROC graph.

For HAFID the threshold τθ was varied while for HAFID-STC, i.e. the full proposed
method, we find the optimum α and β2 for each τθ which was varied in the same manner
as for HAFID. As shown in Fig. 3, HAFID comfortably outperforms all previous methods
while HAFID-STC achieves the best results overall.

Figure 4 shows a comparative visual example for a sample degraded frame. SDIp de-
tected 92.1% of the defects but also produced 717 false alarm pixels (out of a total frame
size of 136704 pixels). Morris95 and RV07 were able to achieve correct detection rates of
93.8% and 93.3% but still resulted in 674 and 725 false detections respectively. Kokaram04
produced far fewer false alarms (253) but only detected 86.7% of the true defects. The
HAFID method was better at both detecting more true positives, i.e. 94.6%, and fewer false
alarm pixels at 97 only, while the full proposed method HAFID-STC improved the result
further by reducing the false alarms down to 50 pixels.

Table 1 shows a comparison of the computational speed of all the methods in terms
of average time per frame2 in seconds. All implementations were coded and computed in
MATLAB on a laptop with Intel Centrino 1.6 GHz and 1GB RAM. The proposed algorithm
is somewhat slower than SDIp, considering a longer temporal range is investigated to help
determine defects, but it is a lot more accurate and also outperforms all the other methods.

Table 1: Averaged computational speed for all methods
Method SDIp Morris95 RV07 Kokaram04 HAFID K=13 HAFID-STC
seconds 4 443 93 80 19 26

2The average frame size in our data is 480×356 pixels

Citation
Citation
{Kokaram} 2004

Citation
Citation
{Kokaram and Rayner} 1992

Citation
Citation
{Morris} 1995

Citation
Citation
{Ren and Vlachos} 2007



WANG, MIRMEHDI: HMM BASED ARCHIVE FILM DEFECT DETECTION... 9

Figure 4: (top) Degraded frame and its groundtruth mask, (middle) detection results from
SDIp, Morris95, RV07, and (bottom) results from Kokaram04, HAFID and HAFID-STC.
Green: correctly detected defect; Red: false alarms; Blue: defects not detected.

6 Conclusion

We have presented an archive film defect detection scheme involving HMM modelling of
temporal pixel sequences to obtain an initial defect map and then, using this map as a prior in
an MRF scheme, to iteratively remove false positive defect candidates by examining spatial
constraints followed by a motion tracking stage to remove more false positives based on
temporal constraints.

In this work we have found that it is better to have an overzealous defect detector and then
remove false positives, rather than apply a conservative method where not all true defects are
found and extra steps would have to be implemented till a reasonable target is met.
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The proposed method would fail to respond to a defective pixel if all pixels across a
single observation sequence were defective pixels, although this rarely happens except for
a continuous vertical line scratch. However, overall, the proposed approach performs much
more accurately than the current state-of-the-art and is considerably faster too (except for
SDIp which is not so accurate).
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