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Problem - This paper aims to address the problem of modelling multi-
ple object activity captured in surveillance videos for the application of
anomaly detection.
Related work - Most existing approaches [1, 5, 6] have been devoted to
parametric models such as Dynamic Bayesian Networks (DBNs). In the
context of complex multi-object activity modelling, learning a DBN struc-
ture with appropriate complexity (i.e. the number of hidden states, the
state connectivity, and model topology) remains a difficult problem: (1)
Automatic model selection criteria are inaccurate given sparse and noisy
training data. (2) Specifying a model structure based on prior knowledge
is challenging with surveillance video data as the activity states and dy-
namics are often not apparent and nor well defined. They also change
over time. (3) Once the model complexity is fixed, its expressive power is
hampered/limited by the initial model structure. Adjusting model struc-
ture complexity on-line is nontrivial for a DBN that requires re-learning
new structure and re-estimating model parameters over time.
Our solution - In this paper, we present a new approach for activity mod-
elling and anomaly detection based on non-parametric Gaussian Process
(GP) models [4]. Our approach has the following advantages compared to
the commonly deployed DBNs: (1) The use of a flexible, non-parametric
model alleviates the difficult problem of selecting appropriate model com-
plexity. (2) Our models need fewer parameters. Therefore they are less
prone to overfitting problem. (3) Our models are able to cope with noise
explicitly, resulting in superior robustness against the inevitable noise in
activity representation.

We observed that a complex wide-area scene naturally consists of a
set of semantic regions; each of the regions encapsulates different ac-
tivity patterns which are correlated with each other either explicitly or
implicitly. Our approach aims to discover these semantic regions and
model non-linear relationships among activity patterns observed from the
regions using GP. The understanding of these relationships is crucial in fa-
cilitating the detection of subtle anomalies that involve a group of objects,
which are hard to detect by observing individual object alone.

Figure 1: Approach overview.

Approach overview - A method similar to [2] is employ to decompose a
complex scene into N regions (see Fig. 1(a)) automatically according to
the spatial-temporal distribution of activity patterns observed in a training
set of video sequences. We then extract horizontal/vertical components of
optical flow from each region over time and represent them as time series,
ûn and v̂n. A detailed account on activity representation is given in the
paper.

GP regression models are constructed for each region to model fea-
tures ûn and v̂n separately. Each model predicts the activity pattern from
each region in the next time interval using activity patterns in other re-
gions observed at present. A GP regression model is formally defined as
y = f (x) + ε , where x denotes an input vector at t − 1 and y denotes a
one-dimensional scalar output at t. Function f (x) is a GP specified by
its mean function m(x) and covariance function k(x,x′). The noise in the
data is modelled explicitly in ε ∼ N (0,σ2

n ), an independent Gaussian
white noise with variance σ2

n .
As our objective is to model relationships among activity patterns

from different regions, we consider a squared exponential covariance func-
tion that implements Automatic Relevance Determination (ARD) [3] since

Figure 2: A fire engine (highlighted with a box) causing interruptions to
left-right turn traffic flow. This anomaly is detected by the GP models be-
cause activity patterns from regions highlighted in red colour are contrary
to the predictive distribution computed using the past observations from
other regions.

it is capable of capturing the strength of influence among regions of a busy
scene:
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We also employ a neural network covariance function which allows a
model to adapt to functions whose smoothness changes with the inputs:
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where σ f defines the magnitude and Σ encodes the relationships among
activity patterns from different regions. To train the models, we estimate
the hyper-parameters of a covariance function by maximising its marginal
likelihood given the training data.

With the learned models, a novel one-step ahead prediction strategy
is formulated to detect subtle anomalies. In particular, given a test vector
x∗ that consists of the past observations at t−1 from N−1 regions {r j},
where j = 1, . . . ,N, j 6= i, the one-step ahead predictive distribution of
region ri at t is computed as
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(3)

where f (x∗) is the mean and V( f∗) is the variance of the predictive dis-
tribution (i.e. uncertainty on prediction), whilst k∗ denotes the vector of
covariance between the test vector and the M training cases.

Anomaly is detected if the actual observation deviates largely from
the predictive distribution (see Eqn. 3), which indicates that the learned re-
lationship between different activity patterns is broken (see Fig. 2 for ex-
ample). We compared two types of anomaly score for measuring the nor-
mality deviation, namely squared residual and predictive log-likelihood,
with the latter taking the predictive uncertainty into account. Detailed
explanation on anomaly detection is given in the paper.

The proposed approach is evaluated using a challenging public traffic
scene featured complex multi-object interactions, activity patterns with
changing complexity and noisy observations. Experimental results show
that our GP models outperform DBNs for activity modelling and anomaly
detection on sensitivity to anomaly, noise robustness and flexibility in
learning from scarce training data.
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