Semi-Supervised Discriminant Analysis via Spectral Transduction
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Linear Discriminant Analysis (LDA) is a popular method for dimension-
ality reduction and classification. In real-world applications when there
is no sufficient labeled data, LDA suffers from serious performance drop
or even fails to work.In order to address this problem, several numerical
solutions have been proposed.Another possible solution for SSS problem
is to learn with both labeled and unlabeled data. It is more natural and
reasonable since in reality we usually have a large supply of unlabeled
data and comparatively insufficient labeled data.

In this paper, we continue to pursue in the direction of exploring la-
bel information from unlabeled training samples for LDA. Our proposed
method(STSDA), comprises three stages. First, we formulate label trans-
duction with labeled and unlabeled data as a convex optimization prob-
lem with pairwise constraints and solve it efficiently with a closed-form
solution. Then, some unlabeled data with reliable class estimations are
selected through a balanced strategy to augment the original labeled data
set. At last, LDA with manifold regularization is performed. Compared
with previous related methods, our work has advantages in the following
aspects: 1) We take into account both label augmenting and local struc-
ture preserving. 2) The optimization problem is convex which could be
solved effectively in an analytical manner with a global optimal solution.
3) The balanced data selection strategy is more effective than the prelim-
inary method.

Let us consider the supervisory information in the form of pairwise
similarity and dissimilarity constraints, which are included in . and &,
respectively.

& = {(xi,X;)|x; and X; belong to the same class}, W

2 = {(Xm,Xn)|Xm and x, belong to different classes}.

We denote each pairwise similarity constraint (x;,X;) € . by an n-dimensi
-onal indicator vector w; (k-th, k = 1,...,|.#”|), which has only two non-
zero elements: w (i) = 1 and ui(j) = —1. Since the class indicators z; and
z; are equal (both 1 or -1 for two class problem), we have usz =0. Let
U = [uy,...,u5|] be the positive constraints matrix, where || denotes
the cardinality of .. Then, the pairwise similarity constraints can be ex-
pressed as UTz = 0. Similarly, each dissimilarity constraint (X,,,X,) € 2
can be represented by an indicator vector v, with only two non-zero el-
ements: Vi(m) =1 and vi(n) = 1. Define V = [vy,...,¥|5|] as the neg-
ative constraints matrix. The pairwise dissimilarity constraints can be
expressed as VI'z = 0. Consequently, we have the following constrained
Normalized Cuts formulation which is an extension of [3]:

'Lz

st UTz=0;V7z=0,

min ) 2)
where L is called Laplacian matrix and Q is computed according to the
similarities between each two samples.

Solving this constrained optimization problem can be facilitated by
using orthogonal projection matrices. Let U € R" be a subspace spanned
by columns of U with U~ as its null orthogonal space. Py and Py. are
the orthogonal projection matrices onto U and U, respectively. From the
definition above, Py z is the projection of z onto U' and it satisfies the
property as follows:

VzeUt,Pyz=0;Pyz=2z 3)

According to [2], Py can be calculated directly from U as Py =1 —
U(UTU)*IUT, where I is the identity matrix. Therefore, if z is a feasible
solution, it must satisfy Py1z = z. In the same sense, Py is defined as
the orthogonal projection matrix on the null orthogonal space spanned by
V and it can be computed in a similar way. With these transformations,
Eq. (2) can be expressed as:

T

z'Qz
The solution to this optimization problem can be finally obtained by
solving a generalized eigenvalue problem which be formulated as Eq. (5).
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Subsequently,we aim to select some unlabel data points whose label
estimation are with sufficiently high confidence. We first perform LDA
using all the training data with their estimated labels. Then, in the embed-
ding space, the label confidence is defined according to local data distri-
bution. Specifically, for each unlabeled data x; (i =+ 1,...,n), its label
confidence is defined as the proportion of data points with the same es-
timated label as x; among its k nearest neighbors. For all the unlabeled
data with the same estimated class labels, we sort their confidence values
in descending order and select the first m samples to augment the original
labeled data set where m is a selection scale factor.

With the augmented labeled data set, we seek to find a global projec-
tion that can not only improve class discriminative ability but also pre-
serve local data structure. We take into account local structure preserving
through Laplacian regularization [1]. The optimization problem of the
regularized LDA can be written as:

min st. Ppuz=z;Pyiz=1z. “4)
z

LPy.Py.z=1Qz
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W* = max trace ( (6)
w

The scatter matrixes S;, and S,, are computed with the augmented labeled
data set. K(W) is the Laplacian regularization term and the coefficient «
controls the relative importance of the discrimination and regularization.
K (W) is defined as:

n

Y (Wix;—W'x;)%S;; = W XLX'W,
i,j=1

K(W) = N

where X = [x[,...,X,] is the matrix form of the whole data set. With
the Laplacian regularizer, all data points are involved in the optimiza-
tion. Thus the local geometric structure of both labeled and unlabeled
data tends to be preserved with the transformation W. The discriminant
projector W can be computed efficiently by solving the following gener-
alized eigendecomposition problem: S, W = A(S,, + aXLXT)W.
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