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Abstract
This paper deals with the temporal synchronization of image sequences. Two in-

stances of this problem are considered: (a) synchronization of human actions and (b)
synchronization of dynamic scenes with view changes. To address both tasks and to re-
liably handle large view variations, we use self-similarity matrices which remain stable
across views. We propose time-adaptive descriptors that capture the structure of these
matrices while being invariant to the impact of time warps between views. Synchro-
nizing two sequences is then performed by aligning their temporal descriptors using the
Dynamic Time Warping algorithm. We present quantitative comparison results between
time-fixed and time-adaptive descriptors for image sequences with different frame rates.
We also illustrate the performance of the approach on several challenging videos with
large view variations, drastic independent camera motions and within-class variability of
human actions.

1 Introduction
When temporal alignment is unknown, synchronizing image sequences is a necessary and
critical task for applications such as novel view synthesis, 3D reconstruction or analysis of
dynamic scenes. It can be also useful for comparing sequences with dynamic contents that
are similar up to speed variations. This is of interest for generic action analysis/recognition,
or for more specific action analysis tasks like the comparison of different athletes’ techniques
in sport videos. The major difficulty lies in the drastic differences of visual appearance that
the two sequences can exhibit. These changes can be due to different viewpoints, camera
motions or even varying appearances of the moving objects. In addition to the inter-view
variability, inter-scene variability is another source of concern when trying to synchronize
sequences from two similar though not identical dynamic scenes.

In this work, we address two instances of this challenging synchronization problem in a
common view-independent framework. The first one is Action Synchronization, i.e. syn-
chronize sequences of different performances of an action under view changes. The sec-
ond one is Video Synchronization, i.e. synchronize sequences of a same dynamic event
seen from different views. In both cases, temporal alignment or synchronization consists in
matching frames of the first sequence with frames in the second one.
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1.1 Previous works

Video synchronization has mostly been addressed under assumptions of stationary cameras
and linear time transformation. Some works jointly estimate the space-time transformations
between two image sequences [4, 12, 16] while others focus only on temporal alignment
[3, 11, 17, 18]. In the majority of methods, spatial correspondences between views are
exploited either to estimate the fundamental matrix [4] or to derive rank constraints on ob-
servation matrices [18]. A few other methods, however, use image-based temporal features
without correspondences as in [17], where authors investigate a temporal descriptor of im-
age sequence based on co-occurences of appearance changes. Synchronization of image
sequences from moving cameras is dealt by some authors but, to the best of our knowledge,
none of them addresses automatic synchronization. For example in [15], authors choose
manually the 5 independently moving points that must be tracked successfully along both
sequences.

All approaches above deal with the synchronization of two sequences of the same dy-
namic scene. Two methods of video synchronization [11, 17] have also been proposed in
order to temporally align a same action performed by different persons. The first one evalu-
ates temporal alignment by using dynamic time warping and rank constraints on observation
matrices and relies on spatial correspondences between image sequences which are hard to
obtain in practice. The second approach estimates the space-time transformation based on
maximizing local space-time correlations for image sequences captured by stationary cam-
eras.

1.2 Our approach

In this paper, we propose an approach to automatically synchronize either human actions
or videos of the same dynamic event, recorded from substantially different viewpoints. Our
method combines a temporal description of image sequences, which does not require point
correspondences between views, with Dynamic Time Warping (DTW). This procedure al-
lows us to deal with arbitrary non-linear time warps (up to monotonicity constraint), which
is especially important for action synchronization. We only assume, for the time being, that
the two sequences at hand show two viewpoints of the same dynamic event or of the same
class of human actions with sufficient time overlap.

In contrast to the majority of existing methods, we do not impose assumptions as suf-
ficient background information, point correspondences or linear modeling of the temporal
misalignment. We use the self-similarity matrix (SSM) as a temporal “signature” of image
sequences. This matrix, recently introduced in [6] for action recognition, is fairly stable
under view changes and characterizes the dynamics of the scene. Indeed, similar dynamic
events produce similar SSM structures as shown in Fig 1 for bending action performed by
different persons and seen from different views. Time-dependent descriptors derived from
these two matrices can be matched up to a time warping which we estimate using DTW.

In [6], Junejo et al. propose to describe the SSM with a temporal HoG-based local
descriptors computed on log-polar supports of fixed size. Keeping fixed the size of these
SSM portions is especially problematic when it comes to compare scenes with substantial
dynamical differences (different frame rates in both synchronization problems we consider
and/or different action speeds in case of action synchronization). To deal with this issue, we
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(a) (b) (c) (d)
Figure 1: Self-similarity matrix illustration for two different performances of bending action,
each seen from side and top views. These matrices are computed from joint trajectories of
Motion Capture dataset (mocap.cs.cmu.edu). 3D data are projected to simulate both views.
(a-b) SSMs of the first performance (c-d) SSMs of the second performance. The matrix
structures are similar despite viewpoint differences and inter-performance variability.

introduce variable-size descriptors inspired from the scale-invariant descriptors used in vi-
sual matching. As another contribution, we also show how this synchronization framework
can effectively handle cameras moving arbitrarily, provided that the dominant motion in the
scene is estimated and compensated. To this end, we build SSMs exclusively on point trajec-
tories that are automatically extracted. Note that, although point trajectories were introduced
in [6] as a possible type of data for defining SSMs, optical flow was the main feature. Indeed,
trajectories were only used on MoCap data, or on videos [5] where trajectories are extracted
semi-automatically by tracking of body joints [1].

The remainder of this paper is organized as follows: Section 2 presents the proposed
method of synchronization. Section 3 focuses on comparison results between fixed-size and
time-adaptive descriptors. Section 4 and 5 are devoted to experimental results, respectively
for dynamic scenes and for human actions. In Section 6, we conclude and propose future
research directions.

2 Synchronization framework

In this section, we describe the common framework for synchronizing both human actions
and dynamic scenes. First, we present the adaptive temporal descriptors of image sequences
based on temporal self-similarities. Then, we describe the Dynamic Time Warping algorithm
used in order to synchronize descriptor sequences.

2.1 Temporal descriptors

Computing temporal descriptors requires two steps: (i) building for each sequence a self-
similarity matrix (SSM) which captures similarities and dissimilarities along the image se-
quence and (ii) computing a temporal descriptor which captures the main structures of the
SSM.

2.1.1 Self-similarity matrices

Considering a sequence of images, denoted I = {I1, I2, . . . IT}, the self-similarity matrix,
D(I) = [di j](i, j)=1...T , is a square symmetric matrix where each entry di j represents a distance
between some features extracted from frames Ii and I j. In this work, we use the Euclidean
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distance on real point trajectories:

di j =
Ni j

∑
k=1

‖xk
i − xk

j‖2, (1)

where xk
i and xk

j are the point positions at instants i and j of the kth trajectory among the Ni j
trajectories that span the complete time interval between frames Ii and I j. Point trajectories
are extracted with KLT tracker [13, 14]: all along the sequence, interest points (corners) are
detected and tracked for some time. These trajectories can be short or long and correspond to
static or moving points. Moreover we propose to overcome camera motions by estimating the
dominant motion with a standard robust estimator [2, 9] and compensating point trajectories
such that the point coordinates are expressed in the coordinate system of the first frame of
the sequence.

2.1.2 Local SSM descriptors

To perform synchronization, we need to capture the structure of the SSM. Following [6],
we consider the SSM as an “image” and extract a local descriptor around each diagonal
entry of the matrix. We use a 8-bin normalized histogram of gradient directions for each
of the 11 blocks of a log-polar structure. The descriptor vector of size 88, hi corresponding
to the frame Ii, is obtained by concatenating the normalized histograms as illustrated in
Fig. 2. Finally, the temporal descriptor computed for an image sequence is the sequence
H = (h1, ...,hT ) of such local descriptors.

Figure 2: Local descriptors of an SSM are centered at every diagonal point i = 1...T . His-
tograms of gradient directions are computed separately for each block and concatenated to
build the temporal descriptor hi corresponding to time i.

Instead of using a fixed size for the log-polar structure, we propose to adapt its support to
the temporal “scale” at the current instant. Indeed, for image sequences with different frame
rates or actions performed at different speeds, corresponding SSM patterns exhibit different
sizes due to these speed variations. Not taking into account this dependence of SSM pat-
terns’ size on speed fluctuations will affect in some cases the quality of the synchronization.
To circumvent this problem, we propose to compute, for each diagonal point of the SSM,
a temporal scale in a similar way as intrinsic scale is computed around interest points in
images. At each diagonal point (i, i) of the SSM, we compute the normalized Laplacian

4D(i, i,σ) = σ
2(D ?∂xxGσ +D ?∂yyGσ )(i, i) (2)

over a range of standard deviations σ , with Gσ denoting the isotropic Gaussian filter with
variance σ2. The best scale σi is the one maximizing the normalized Laplacian as proposed
in [8]. The radius of the circular support that is used to compute descriptor hi at time i is set
to 2σi.
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2.2 Descriptor alignment
This section addresses the problem of aligning descriptor sequences to perform synchroniza-
tion. First, we describe, in Section 2.2.1, the method used for image sequences without prior
on the time warping function. In Section 2.2.2, we propose a simple approach when the
unknown warping function is a linear function with known frame rate ratio.

2.2.1 Synchronization without prior

Our goal is to align descriptor sequences extracted from two self-similarity matrices. This
problem is similar to the one of warping two temporal signals as in speech recognition [10]
for example. DTW is a classic tool to solve this problem. In our case, DTW is used to esti-
mate the warping function w between the time axes of the two videos. The warping between
frames i and j of sequences 1 and 2 respectively is expressed as i = w( j). Considering two
image sequences represented by their temporal descriptors denoted H1 = (h1

1, ...h
1
i , ...,h

1
N)

and H2 = (h2
1, ...h

2
j , ...,h

2
M) respectively, we define the cost matrix C for a dissimilarity mea-

sure S (Euclidean distance for example) as

C = [ci j]i=1...N, j=1...M =
[
S(h1

i ,h
2
j)

]
i=1...N, j=1...M . (3)

As a consequence, the best temporal alignment is expressed by the set of pairs {(i, j)} that
yields the global minimum of the cumulative dissimilarity measure, i.e.,

CT = min
w

M

∑
j=1

S(h1
w( j),h

2
j). (4)

We can solve this optimization problem recursively using dynamic programming. Consid-
ering three possible moves (horizontal, vertical and diagonal) for the admissible monotonic
warps, the partial minimum accumulated cost, for each pair of frames (i, j), is

CA(h1
i ,h

2
j) = ci j +min[CA(h1

i−1,h
2
j),CA(h1

i−1,h
2
j−1),CA(h1

i ,h
2
j−1)]. (5)

The final solution is by definition CT = CA(h1
N ,h2

M). Finally, the set of synchronized pairs
{(i, j)}, is obtained by tracing back the optimal path in the accumulated cost matrix from the
pair of frames (N,M) to the pair (1,1).

2.2.2 Synchronization for linear warping function

An alternative approach can be used when admissible warps are restricted to linear trans-
formations where the frame rate ratio, a, between sequences is known. In that case, the
synchronization problem boils down to estimating a simple time-shift. As before, we com-
pute SSMs and descriptors for both image sequences and the corresponding cost matrix, C ,
defined in (3). Then for each possible integer time-shift k, we compute the average cost

ca(k) =
∑

min( N−k
a ,M)

j=max(1, 1−k
a )

S(h1
a j+k,h

2
j)

min(N−k
a ,M)−max(1, 1−k

a )+1
. (6)

The best linear warp is then w( j) = a j + argmink ca(k), the minimizer being typically
taken over k =

[
−M+N

4 , M+N
4

]
. For visualization purpose, we can plot this average cost, ca,

as a function of time-shift k, as we shall see in experimental sections.
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3 Fixed vs. adaptive size of the log-polar structure

In this section, we propose to compare synchronization results obtained using the descriptors
proposed in [6] and our time-adaptive descriptors for different simulated linear warps. First,
we briefly describe the estimation of the alignment error for known linear ground truth, which
will serve as the evaluation criteria in this section. Then we present quantitative evaluations
on 3D Motion Capture (MoCap) data and on natural image sequences.

3.1 Error evaluation

Let us denote ŵ the estimated time warp and (a,k), the frame rate ratio and the time-shift
of the true linear warp. We define the estimation error as the average distance of points
{(ŵ( j), j)} j=1...M on the estimated path to the line with parameters (a,k):

dist =
1
M

M

∑
j=1

|ŵ( j)−a j− k|
(1+a2)

1
2

. (7)

By constructing, DTW recovers the minimum cost path in the cost matrix between pairs
(1,1) and (N,M). As a consequence, errors are necessarily made at the beginning and at the
end because DTW finds correspondences where they cannot exist. To limit the influence of
these structural errors on the evaluation criteria, we limit the averaging in (7) to instants j
such that the projection of (ŵ( j), j) on the true line has coordinates within [1,N] and [1,M]
respectively.

3.2 Results on MoCap data

We first carry out experiments on sequences with different frame rates from 3D MoCap data
from CMU dataset (http://mocap.cs.cmu.edu). Considering different actions, we construct
side and top “views” by appropriate projection on 2D planes and we temporally subsample
trajectories of one sequence to simulate different frame rate changes. For a given time-shift,
we compute and synchronize SSMs as described in Section 2.2.1. We estimate the mean
synchronization error by the method presented in the previous section. We evaluate this
error for three types of local SSM descriptors: (1) the size of log-polar structure is fixed over
time and identical for both sequences as in [6]; (2) the size is fixed over time but manually
tuned for each sequence (referred as [6]*) such that the ratio of support sizes is equal to
the frame rate ratio; (3) the sizes are tuned automatically as described in 2.1.2. Table 1
summarizes some results for golf action sequence pairs with different simulated frame rate
ratios.

Table 1: Mean synchronization error for MoCap data for different frame rate ratios, RFR

Sequence RFR = 2 RFR = 3 RFR = 4
name [6] [6]* proposed [6] [6]* proposed [6] [6]* proposed

golf seq1 1.43 1.24 1.08 1.92 5.30 0.70 3.02 2.15 0.77
golf seq2 0.98 1.46 0.78 2.10 3.70 0.74 2.83 3.16 0.69
golf seq3 0.98 0.97 0.85 1.51 3.74 0.90 3.97 2.85 0.63

In general, our time-adaptive descriptor gives lower mean error values for all simulated
frame rate ratios. As we can observe, choosing manually the size of the circular windows
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does not necessarily provide better results than the fixed and always less precise results com-
pared to time-adaptive size descriptors. This confirms that intrinsic time scale is important
for characterizing SSM structures.

3.3 Results on natural sequences
We also validate the performance of the automatic time-adaptive descriptor by simulating
different frame rates for natural sequences originally captured with time-shift but identical
frame rates. After subsampling temporally image sequences, we compute SSMs and the
same three temporal descriptors as in the previous MoCap experiments. Results for some
pairs of sequences are reported in Table 2. As for MoCap data, the time-adaptive descriptor
yields lower synchronization error.

Table 2: Mean synchronization error for natural image sequences

Sequence RFR = 2 RFR = 3 RFR = 4
name [6] [6]* proposed [6] [6]* proposed [6] [6]* proposed

seq1 (81) 3.72 4.67 4.55 3.73 8.75 3.66 8.6 6.41 2.17
seq2 (−9) 3.53 3.91 1.83 7.57 8.36 4.92 5.5 5.19 1.4
seq3 (−27) 2.93 15.42 2.48 5.77 23.13 4.77 16.56 17.79 2.14

4 Synchronization results for dynamic scenes
We now present various results of dynamic scene synchronization. The first experiments,
proposed in Section 4.1, deal with image sequences from static cameras whereas the second
ones, in Section 4.2, consider videos without constraints on camera motions.

4.1 Sequences for static viewpoints with linear time warping
First, we validate the method for video synchronization by considering outdoor basketball
videos captured by static cameras. Such a pair of image sequences is illustrated in Fig. 3. The
viewpoints of the cameras are almost opposite which means that no point of the background
is seen in both views and this also holds for most points on the players.

Considering that the time warp is affine with a known frame rate ratio ( a = 1), we can use
the method proposed in Section 2.2.2 to estimate the unknown time-shift. Fig. 3(b) displays
the mean alignment cost as a function of time-shift. We can observe a minimum for a time-
shift value of 81 for both cases, which is the correct value. Assuming now that we have no
prior on the time-warping function, we apply the DTW method. Extracted time warp, plotted
as red curve in Fig. 3(c), almost recovers ground truth transformation (blue curve).

We can note that the dynamic scene content which is not shared by the two views can
disturb the estimation of time warps. Indeed, a moving background object seen in only one
view, induces trajectories which contribute to the SSM computation in one sequence and not
in the second one. Consequently, SSM structures can differ and synchronization can fail
although the sequences mostly show the same dynamic scene.

4.2 Unconstrained image sequences
Both types of warp estimation can be applied to image sequences captured by moving cam-
eras. We detect and track KLT features whose trajectories are used in order to compute SSM
after compensating the dominant motion. First, we present results on a pair of sequences
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(a) (b) (c)
Figure 3: Synchronization results of basket ball sequences with opposite viewpoints and
affine de-synchronization. (a) Snapshots of the two sequences showing two players. Their
desynchronization simply amounts to a time-shift of 81 frames. (b) Mean cost as a function
of time-shift, the global time-shift minimizer is 81, which is the correct value. (c) DTW
estimates of the time warp (red) plotted with the ground truth (blue). Estimation almost
recovers the ground truth with a mean estimation error of 7.29 frames.

(a) (b) (c)
Figure 4: Synchronization results of sport sequence with its slow-motion replay. The warp
to be recovered is affine with parameters a and k equal to 2

3 and 6 respectively. (a) Snapshots
of the two sequences displayed in a common time-line. (b) The time-warping estimation (red
curve) recovers reasonably well the ground truth (blue curve) with a mean synchronization
error equal to 1.16 frames.

extracted from sport broadcasts, with the second sequence being a slow-motion replay of
the first sequence with linear time warp as illustrated in Fig. 4(a). Result of time-shift es-
timation for known frame rate ratio is proposed in Fig. 4(b) where we can observe that the
estimated shift corresponds to the correct value of 6 frames. DTW estimation of synchro-
nization recovers partially the ground truth as depicted in Fig. 4(c). Yet, the estimation is not
perfect probably due to the limited moves allowed in the DTW approach. However the mean
synchronization error is only equal to 1.16 frames with a standard deviation of 1.02.

Preceding example was based on two sequences with identical viewpoints. We now
present another sport example with a drastic difference of viewpoints and different frame
rates (Fig. 5(a)). Results are shown in Fig. 5(b) if we assume that the time-warping function
is affine with unknown time-shift and in Fig. 5(c) when we assume no prior on the warping
function. We can see that the DTW approach (red curve in Fig. 5(c)) recovers reasonably the
ground truth (blue curve) as in the preceding example, whereas the time-shift estimated by
the first method is not the correct value. However, we can observe that several local minima
are close to the global one, including one reached for a time-shift of 10 frames, close to the
correct value which is 11 frames.

5 Synchronization results for actions

In this section, we present various results on natural human action synchronization in differ-
ent videos, including movies and sport broadcasts. Complete ground truth of synchronization
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(a) (b) (c)
Figure 5: Synchronization results of sport sequence with its slow-motion replay. The warp
to be recovered is affine with parameters a and k equal to 1

2 and 11 respectively. (a) Se-
quences represented by several key-frames (b) Mean matching cost w.r.t. the time-shift. The
minimum is reached for a time-shift of −16 frames which is not the correct value. (c) The
time-warping estimation with DTW (red curve) recovers reasonably well the ground truth
(blue curve) with a mean synchronization error equal to 1.77 frames.

are not available for these experiments. We use however some pairs of key-frames manually
chosen to evaluate roughly the quality of estimated warps.

5.1 Drinking and smoking actions in a movie
In the movie Coffee and Cigarettes, a lot of drinking and smoking actions are performed by
several actors and seen from different viewpoints. For both actions, we compute SSMs based
on real point trajectories (or portions of trajectories) included in bounding boxes centered on
the face of the actors (extracted from annotations [7]). An example of synchronization result
for drinking action is illustrated in Fig. 6. The estimated warping function (red curve) is
close to our partial ground truth time correspondences shown as yellow points, despite view
and length differences between sequences.

(a) (b)
Figure 6: Synchronization of two drinking actions. (a) Cost matrix with the estimated warp-
ing function (red curve) and some manually picked time correspondences (yellow points).
(b) Some time correspondences from the estimated warping function illustrated by frame
correspondences.

In this case, we use annotated bounding boxes. This could be automatized thanks to an
appropriate object detectors (e.g. face detector). However this would probably be less robust
for natural sequences. For example, classical face detection methods sometimes fail due to
the face orientation of some characters in this movie.

5.2 Sport actions
Synchronizing actions can be particularly interesting for analyzing or comparing techniques
of athletes. We propose synchronization results of such natural actions extracted from sport
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(a) (b)
Figure 7: Synchronization of shot put action. (a) Cost matrix and estimated time warp-
ing function with some ground truth correspondences. (b) Some correspondence results
extracted from the estimated time warp. For each correspondence, frames corresponds to
similar athlete posture.

broadcasts. In this case, the views are really similar but the action in the second sequence is
almost twice as long as the one in the first sequence. The synchronization result illustrated
by the red curve in Fig. 7(a) is well aligned with the sparse ground truth correspondences
(yellow points) that we picked by hand.

6 Conclusion
We have presented a general view-independent framework for synchronizing human actions
and dynamic scenes. The approach is based on temporal speed-invariant description of im-
age sequences from self-similarity matrices. To handle camera motions, we have proposed
to compute these matrices from real point trajectories, previously compensated. As the struc-
tures of these matrices are stable while capturing discriminative dynamic patterns, they allow
the definition of temporal descriptors adapted to the alignment problem in these two contexts.
We have proposed to estimate a characteristic “time-scale” at each instant so that adapted de-
scriptors better characterize the SSM structures. We have demonstrated that this automatic
adaptation improves synchronization results especially for sequences captured with different
frame rates. The main advantage of the whole framework is that we do not impose restrictive
assumptions as sufficient background information or point correspondences between views.
Due to the use of DTW, we can perform both tasks of synchronization even when temporal
misalignment is not a simple shift, but an arbitrary warp. We have assessed the performance
of our approach on challenging real image sequences captured by static or moving cameras.

In this work, we assume that the two image sequences correspond to a same/similar dy-
namic event(s). The method will be exploited in future work to address other tasks such as
action clustering, action detection, video scene duplicate detection or video matching where
such an assumption has to be relaxed.
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