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Abstract

This paper presents a solution to panoramic image stitching of two images with co-
inciding optical centers, but unknown focal length and radial distortion. The algorithm
operates with a minimal set of corresponding points (three) which means that it is well
suited for use in any RANSAC style algorithm for simultaneous estimation of geometry
and outlier rejection. Compared to a previous method for this problem, we are able to
guarantee that the right solution is found in all cases. The solution is obtained by solving
a small system of polynomial equations. The proposed algorithm has been integrated in
a complete multi image stitching system and we evaluate its performance on real images
with lens distortion. We demonstrate both quantitative and qualitative improvements
compared to state of the art methods.

1 Introduction

Given a sequence of images taken from a single point in space, but with varying orientations,
it is possible to map the images into a common reference frame and create a perfectly aligned
larger photograph with a wider field of view. This is normally referred to as panoramic
image stitching. The main purpose of this paper is to extend previous work to account
for camera distortion throughout the stitching process. This is in contrast to most previous
approaches which have assumed a traditional pin-hole camera model. Stitching images with
large radial distortion is useful in a practical context, as it allows the user to create 360 degree
panoramas with wide angle lenses (often suffering from heavy radial distortion), using only
a few exposures. Furthermore, radial distortion occurs frequently in both cheap consumer
cameras and high-end lenses depending on the type of lense.t.c.

In essence, a typical stitching pipeline consists of the following three parts

1. Image matching: Point matches across images are established and an initial estimate
of the image geometry is computed. A RANSAC type algorithm is a popular choice
here [10].

2. Bundle adjustment: The estimate of inner and outer calibration parameters is refined
using non-linear optimization.
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Figure 1: Left: Two images with heavy radial distortion taken with a common focal point.
Right: The same two images after rectification and alignment using the stitching pipeline
presented in this paper.

3. Rendering: The estimated camera parameters are used to project the images into a
common reference frame.

This paper mainly deals with Step 1. At the core of the RANSAC loop is an algorithm
which solves for calibration and geometry given a small set of corresponding points. Ideally
one would like a solver which operates with the minimum possible number of correspon-
dences. For instance, consider two images taken with a pin-hole camera calibrated up to
focal length. We then need to estimate rotation (3 dof) and focal length (1 dof). Each point
match yields two constraints, which means that the minimal solver should use two points.
This problem was solved by Brownet al. in [3]. The rationale for using a minimal point
set is that a smaller number of points yields a smaller probability of selecting a set contam-
inated by outliers. Furthermore, since we are solving directly for the parameters of interest,
there is no need for an error-prone autocalibration process to extract the underlying camera
parameters needed for multi-view non-linear techniques (i.e. bundle adjustment) to proceed.

The problem of dealing with cameras with various forms of non-linear distortions in
computer vision is not new, but traditionally these lens effects have only been incorporated
at the bundle adjustment stage. However, in situations with more than very mild distortions,
it might be necessary to account for non-linear effects already at the RANSAC stage. In
most cases, the dominant non-linear distortion effect is second order radial distortion. This
effect was modeled in a neat way by Fitzgibbon [11] yielding an easy way to formulate and
solve geometric computer vision problems with radial distortion. Following this, a number
of contributions have been made on the estimation of geometric relations in computer vision
along with radial distortion [1, 8, 15, 17]. This paper presents an efficient and stable solution
to the problem of estimating rotation, focal length and radial distortion from two views with
a common focal point. This is done using the minimal set of three point correspondences
and the solution is obtained as one of the zeros of a system of polynomial equations. We
demonstrate on real imagery that incorporating distortion already at the RANSAC stage
yields a clear advantage.

1.1 Relation to Previous Work

The problem of image stitching is relatively well studied and a good overview of the literature
and techniques can be found in the tutorial by Szeliski [21]. A complete stitching system
representative of the state of the art in this area was presented by Brown and Lowe in [4].

A direct inspiration for this work is the two-point algorithm for estimating rotation and
focal length by Brownet al. [3]. This algorithm does however not handle any distortion and
we show that for non-standard lenses, this might be insufficient.
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A related algorithm whichdoesaccount for radial distortion due to Fitzgibbon [11] esti-
mates homography and radial distortion using five correspondences. Two disadvantages of
this approach is that (i) a homography is usually too general since in most cases one can
assume square pixels and zero skewe.t.c. and (ii) the algorithm is not minimal. By contrast,
our algorithm operates with three correspondences making it easier to find outlier-free sets.

Most closely related to our approach is the work by Jin [13]. Jin formulates the same
problem as we do. However, Jin notes that solvers of polynomial equations are often numer-
ically unstable and therefore abandons a direct solution approach. Instead he resorts to an
iterative optimization based scheme. This is problematic since (i) convergence to a solution
cannot be guaranteed (local minima) and (ii) even if a solution is found, this will only be one
of the possible solutions and one cannot be sure to have found the right one. The actual prob-
lem has 18 (possibly complex) solutions and the only way to resolve this ambiguity is to test
with additional points. Indeed, Jin reports poor performance of his algorithm for moderate
to heavy distortions.

Fortunately, there has recently been progress in making polynomial solvers numerically
robust [5, 6, 7, 8]. In this paper we make use of these techniques to provide a numerically
stable true solver for the polynomial system, which is guaranteed to find all solutions.

2 Models for Panoramic Stitching

We consider a setup with two camerasP1 and P2 with a common focal point. We fix a
coordinate system where the common focal point coincides with the origin and such that the
first 3x3 part of the matrixP1 is identity. Moreover, we have a set of world points{Xj} and
corresponding image projections{u1 j} and{u2 j}. In most cases it is beneficial for stability
to assume some partial calibration. A common choice is to assign square pixels, zero skew
and centered principal point [12]. With this assumption we obtain the following relations

λ1 ju1 j = KXj , λ2 ju2 j = KRXj , (1)

whereK =
[

f
f

1

]
, R is a rotation matrix and theλs are the depths. By normalizing to

remove the dependence onλi j and solving forXj we can write down the constraints

〈K−1u1 j ,K
−1u1k〉2

|K−1u1 j |2|K−1u1k|2
= 〈Xj ,Xk〉2

|Xj |2|Xk|2
= 〈K−1u2 j ,K

−1u2k〉2

|K−1u2 j |2|K−1u2k|2
, (2)

whereR has vanished from the right hand side since the scalar products and norms are
invariant to rotations. The expression is squared to remove the square roots from the vector
norms in the denominators. In the above equationf only occurs in even powers and hence
we setp= f 2. Moreover we multiply through withp2 to remove any 1/p2 terms. Finally we
multiply up the denominators. At a first glance, this seems to yield a 4th degree polynomial in
p but the 4th degree terms cancel out leaving a 3rd degree polynomial inp. This formulation
was used in [3] to solve for the focal length. We next show how to modify this expression to
include radial distortion.

2.1 A Three Point Minimal Solution for Distortion and Focal Length

Let x denote measured image coordinates affected by radial distortion and letu denote the
corresponding pin-hole coordinates. We model radial distortion using Fitzgibbon’s division
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model
|x| = (1+λ |x|2)|u|, (3)

where| · | is the vector length andλ is the radial distortion coefficient. This form has the
advantage that in homogeneous coordinates we can write

u∼ x+λz, (4)

wherez= [ 0 0 x2
1 +x2

2 ]T .
We now simply insert (4) into (2) and obtain a polynomial of degree 3 inp and degree

6 in λ (the 8th and 7th degree terms inλ cancel out). One more unknown means that we
need more constraints. With an additional point we can form three independent constraints
of type (2). This situation is actually a little unsatisfactory since we cannot make use of all
available information. Using all three constraints would yield an overdetermined system and
hence there would be no solution in general. One possibility would be to introduce an extra
unknown, but we found no natural way to do this and instead settled for selecting two of
the three constraints to get a system of two equations in two unknowns. The experiments
confirm that this strategy works well. We used the computer algebra software Macaulay2 [2]
to check solvability and number of solutions for the system which is 18 in this case.

In addition to the problem formulation studied in this paper one could consider alternative
setups withe.g. varying focal lengths and/or distortions. However, due to lack of space we
will have to postpone a discussion of these to future publications and simply remark that we
have studied alternative setups to some extent and so far found the case presented here to be
the most practically useful.

3 Numerical Solution using Gröbner Basis Techniques

Solving a system of polynomial equations is often algorithmically difficult and there exist no
efficient general purpose methods. Instead, specialized solvers are developed for particular
cases. Recently, progress has been made using Gröbner basis techniques [5, 9, 19]. These
solvers are known to suffer from numerical problems [16, 20] in some cases, but fortunately
progress has been made on this point [5, 8]. Here, we make use of these advances to obtain
an efficient and robust solver for the equations derived above. Due to lack of space we are not
able to give a self contained treatment of the polynomial techniques and this section should
be read in conjunction withe.g. [5, 19] for the method to be fully repeatable.

Gröbner bases are a concept within algebraic geometry, which is the general theory of
multivariate polynomials over any field. See e.g. [9] for a good introduction to the field.

The goal is to find the set of solutions to a systemp1(x) = · · · = pm(x) = 0 of m poly-
nomial equations ins variables. The polynomialsp1, . . . , pm generate anideal I in C[x], the
ring of multivariate polynomials inx = (x1, . . . ,xs) over the complex numbers. The Gröobner
basis method for polynomial solving is based on computing the eigenvalues of multiplication
mappings in the quotient spaceC[x]/I in analogy with the companion matrix method for one
variable polynomials. The key steps are to (i) expand the system of equations by multiplying
with a problem dependent set of monomials and then write this on matrix form as a product
between a coefficient matrixC and a vector of monomialsX, CX = 0, and thereafter (ii)
to put the system on reduced row echelon form usinge.g. Gauss Jordan elimination which
allows one to extract the necessary multiplication mappings.

In the current application, we are faced with a system of two equations in two unknowns
( f ,λ ) occurring up to degrees 3 and 6 respectively and 18 solutions. We order the monomials
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in grevlexorder and multiply the two equations with all possible monomials up to degree 8,
yielding a 90×132 coefficient matrixC.

With the straightforward method of [19] we were not able to solve the problem and we
had to employ a technique referred to as theredundant solving basis methodin [5]. With
this method one “pretends” to have system with more solutions which is easier to solve. This
produces all the right solutions along with a set of false solutions which have to be filtered
out by evaluation in the original equations. By using this technique and setting the solution
set to 25 zeros (18 for the true system), we were able to get a stable solution.

An interesting comparison would be to run the automatic solver generator by Kukelovaet
al. [14]. This solver does not include any of the stabilizing methods mentioned above and
might therefore fail, but this is yet to be investigated.

The algorithm has been implemented in MATLAB, which is not ideal for speed. How-
ever, the running time is dominated by an LU factorization and an eigenvalue decomposition
which are fast in MATLAB so our implementation should not be too far behind a fully native
implementation. The running time is about 13 milliseconds/instance on a standard 2Ghzma-
chine. The code is available for download athttp://www.maths.lth.se/vision/downloads.

4 System Overview

The image stitching system implemented for this paper follows the typical pattern of mod-
ern geometric computer vision systems. We start off by finding matching points pair wise
across images using the SIFT descriptor/detector [18] together with RANSAC for outlier
rejection [10]. Thereafter we perform first a pair-wise and subsequently a global bundle
adjustment step to get an accurate estimate of geometry and calibration parameters [12]. Fi-
nally we render the images onto an enclosing cylinder which can be cut and unfolded to the
final panoramic image.

5 Experiments

In this section, we study the basic properties of the new algorithm on synthetic data and
also assess its performance as part of a complete stitching system. For this purpose we
have collected two data sets using a lens with significant non-linear distortion. The data sets
referred to asCity andUniversityconsist of 9 and 10 photographs respectively and both cover
360 degrees. In addition, a reference set calledCanalconsisting of 8 images was shot with a
low distortion lens. The final result after matching, bundle adjustment and basic blending is
shown in Figure6. In all cases with image data we normalized the pixel coordinates to make
the width of the image fall in the interval[−1,1]. This makes values forλ independent of
image resolution.

5.1 Robustness to Noise

We first did a basic sanity check of our new algorithm on synthetic data to study its behavior
under noise compared to Fitzgibbons five-point algorithm for homography and distortion.
Since Fitzgibbons algorithm estimates more degrees of freedom than needed to express a
transformation with focal length, rotation and distortion, we expect to see some more sen-
sitivity to noise than with our exact solver. For this experiment we randomly generated
two views separated by a random rotation and drew three and five world points respectively
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Figure 2: Error versus noise on synthetic data for the new three point algorithm and the
five point algorithm for distortion and homography. Despite being over determined, the five
point algorithm shows a slightly larger sensitivity to noise, probably due to the fact that the
underlying model has more degrees of freedom.

from a normal distribution. The points were projected into the two views to form image
point correspondences and a distortion ofλ = −0.5 was applied. Finally varying degrees
of noise (equivalent to the interval 0 to 4 pixels in an 800 pixels wide image) was added
to the projected coordinates and the distortion parameter was estimated using each algo-
rithm. This experiment was repeated 10000 times for each noise level and median errors
were calculated. The median error was chosen since both algorithms (and in particular the
five point algorithm) occasionally produce gross errors for unfortunate point configurations.
This makes the average errors uninformative. The results are shown in Figure5.1. As ex-
pected, both algorithms work well at low noise levels, but the five-point algorithm is slightly
less robust at high noise levels.

5.2 Relation to Jin’s Work

Since the work of Jin [13] is most closely related to the work presented here, a direct com-
parison would have been ideal, but we have not been able to obtain an implementation of
Jin’s method which is a little unsatisfactory. However, this should not be too serious, since
under the assumption that Jin’s method finds the right solution, the results should be virtually
identical to ours. The problem is that Jin’s method isnot guaranteed to produce the desired
solution. Figure 1 in [13] shows statistics of how often Jin’s algorithm finds the correct solu-
tion. For distortions below−0.2 this rate is down to below 40%. In comparison, our solver
is guaranteed to find the right solution for all distortions with no serious sacrifice in speed.

5.3 Performance in RANSAC

The main motivation for the three point algorithm presented in this paper is that it can be used
to improve the RANSAC part in a stitching pipeline. With a refined inner step for geometry
estimation, we hope to recover a larger proportion of inliers, at a higher rate and to a higher
precision. In the next experiment we study the rate at which inliers are discovered as the
RANSAC loop progresses. In addition to the five point algorithm, we now also compare our
algorithm to the two-point algorithm of Brownet al. [3], which solves for focal length but
not distortion. Brownet al. show in [3] that their algorithm is superior to the standard four
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Figure 3: Number of inliers found as a function of the number of RANSAC iterations for
different percentages of outliers. From left to right, the algorithm has been run on examples
with 10%, 25% and 50% outliers taken from theCity data set. In all cases the RANSAC al-
gorithm was run 100 times and mean values were calculated. As can be seen, for moderate to
large numbers of outliers, the minimal solver is superior to the overdetermined solver for ho-
mography and distortion. In neither case is the two-point solver for focal length competitive.
This is expected since the two-point solver assumes zero distortion.

point DLT algorithm for estimating a homography and hence we omit a comparison with the
DLT. We fixed the threshold for outlier rejection to 3 pixels and ran each algorithm in turn for
400 RANSAC iterations, keeping track of the largest inlier set found so far. We repeated this
100 times on noisy point matches from theCity data set and computed averages. To study the
influence of varying degrees of outlier contamination we also repeated the whole process for
cases with 10%, 25% and 50% outliers. The results of this experiment are shown in Figure3.
As can be seen, the two-point algorithm is not competitive on this sequence and recovers half
as many or fewer inliers compared to our algorithm in all cases. The behavior of the five-
point algorithm is more interesting. For the case with very few inliers its performance in
terms of inliers is virtually as good as for the minimal algorithm. This is because the quality
of the inlier point matches is quite high in terms of pixel accuracy, which means that as long
as we find a set of good quality inliers we are well served by either algorithm. For the case
with 25% outlier rate we already observe a significant difference and for outlier rates of 50%
and more our algorithm is clearly superior. The running time for the five point algorithm
is slightly lower at around 10 milliseconds/instance in our implementation compared to 13
milliseconds for the three point algorithm. With a moderate degree of outliers in the process,
this speed gain is easily eaten up by the extra RANSAC iterations required.

Although the two-point algorithm recovers less inliers thane.g. the three point algo-
rithm, it still finds a substantial number of correct matches. However, the problem is that
these matches are exactly the matches which agree with the assumption of zero distortion.
In Figure4 one can see the qualitative difference between correspondences produced by the
three point method (with distortion) and the two-point method (no distortion). Whereas the
three point solver produces matches well spread out over the images, the two-point solver
recovers points grouped together near the centers of the images where the projection is rea-
sonably well approximated by a pin-hole camera. This is problematic for two reasons, (i)
the initial estimate of camera parameters will be poor and (ii) points located closely together
makes for poor conditioning of the bundle adjustment step.

It should be mentioned that there are other possible ways around this problem. One could
e.g. set an artificially high threshold of outlier rejection hoping to recover more inliers, but
at the same time increasing the risk of accepting a false match as an inlier. One could also
look for inliers in multiple passes by alternating bundle adjustment and inlier selection, but
this process is more costly and prone to ending up in local minima. For comparison we



8 BYRÖD, BROWN, ÅSTRÖM: PANORAMIC STITCHING WITH RADIAL DISTORTION

0 200 400 600 800

0

100

200

300

400

500

600
0 200 400 600 800

0

100

200

300

400

500

600

0 200 400 600 800

0

100

200

300

400

500

600
0 200 400 600 800

0

100

200

300

400

500

600

Figure 4: Point matches generated using the 2-point algorithm (top), versus our new 3-point
algorithm including radial distortion (bottom). Note that the 2-point algorithm is only able to
find matches in the central, undistorted portion of the images whereas the 3-point algorithm
finds matches all the way to the image edge. This allows for a much more robust image
alignment procedure in the presence of radial distortion.

ran the Autostitch software by Brown and Lowe [4] on theCity, andUniversitydata sets.
Despite not explicitely accounting for radial distortion, Autostitch was actually able to stitch
together both sequences. However the final result contains visible artifacts which using the
system presented in this paper we were able to avoid. Close-ups of two examples are shown
in Figure5.

6 Conclusions

We have presented a solution to the problem of estimating rotation, focal length and radial
distortion from two images of the same scene undergoing pure rotation using the minimal
setup with three point correspondences. The main contribution is that compared to a previous
method for this problem, we are able to guarantee that the correct solution is found for all
cases. Moreover, we have shown that including radial distortion at the RANSAC stage is
beneficial compared to distortion free approaches in terms of number of inliers found and
overall precision. An advantage of our algorithm is the ability to recover inliers evenly over
the whole image where an algorithm which does not model distortion will only keep point
matches close to the centers of the images. Having point matches in the center as well as
close to the edges improves recognition performance as well as stability in the subsequent
bundle adjustment stage. Compared to a non-minimal algorithm, we in particular do much
better at higher outlier rates since a smaller correspondence set yields a smaller risk of hitting
an outlier or a poor quality match.

Finally, we have investigated the practical value of the algorithm on realistic data sets and
demonstrated qualitative improvements in the end result compared to a recently published
stitching system.
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Figure 5: Top row: Close-ups on two mistakes made by Autostitch on the sequenceCity.
Bottom row: Results obtained using the system presented in this paper.

(a)City

(b) University

(c) Canal

Figure 6: 360 degree panoramic stitching of the sequencesCity, UniversityandCanalusing
the system described in this paper. The first two sequences were shot using a fish-eye lens
while the last sequence was shot with a normal lens. The stitching pipeline includes the
following steps: A RANSAC stage where good point matches are established and an initial
guess for geometry and calibration is estimated, a pair wise bundle adjustment step to polish
the initial estimate, a global bundle adjustment step to further refine internal and external
calibration parameters and finally a rendering step with basic blending.
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