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Continuous, real-time mapping of an environment using a camera re-
quires a constant-time estimation engine. This rules out optimal global
solving such as bundle adjustment. In this article, we investigate the pre-
cision that can be achieved with only local estimation of motion and struc-
ture provided by a stereo pair. We also discuss the integration of a loop
closure and relocalisation mechanism that is essential for working in non-
controlled environments where tracking assumptions are often violated.
The system is comprised of three key components: (i) a representation of
the global environment in terms of a continuous sequence of relative loca-
tions; (ii) a visual processing front-end that tracks features with sub-pixel
accuracy, computes temporal and spatial correspondences, and estimates
precise local structure from these features; (iii) a method for loop-closure
which is independent of the map geometry, and solves the loop closure
and kidnapped robot problem; to produce a system capable of mapping
long sequences over large distances with high precision, but in constant
time processed at 30-45 Hz.

A SLAM system requires a way to represent the map in the environ-
ment and several possible representations are possible. In this work, a
continuous relative representation (CRR), illustrated in Fig. 1, was used.
This approach is beneficial for two reasons. First, it allows constant time
state-updates even when loop-closures are detected and relative bundle
adjustment (RBA) is applied [4]. Second, optimisation using CRR effec-
tively handles problems inherent in sub-mapping, such as map merging
and splitting, data duplication and inconsistency.

Figure 1: Continuous relative representation (CRR).

The visual front-end combines careful engineered computer vision
algorithms [2] for robust motion estimation from a stereo pair with two
novel components: “true scale” SIFT and quadtree feature selection.

The idea of “true scale” is to reduce the expensive part of the SIFT
algorithm [3] that consists in finding an extremum in scale in a Difference
of Gaussians (DoG) pyramid. Landmark descriptors are built correspond-
ing to regions in the world of same physical size. It can be achieved at no
extra computational cost as the left-right matching that provides the 3-D
location is required in any case for the motion estimation. True scale re-
quires choosing a set of 3-D sizes for different depth ranges called “rings”
to ensure the projection size of the 3-D template lies within a given pixel
size range (Fig. 2).

A quadtree representation is used to ensure a even distribution of
points in the image. The quadtree contains the number of 3-D features
that currently project to that cell (these are done during temporal match-
ing). Potential new features, in order of their Harris distinctiveness scores,
are tested against the quadtree to ensure that the number in each cell does
not exceed a pre-set maximum percentage. On selecting a potential fea-
ture from the left image, its correspondence in the right image is sought by
scanline search in our rectified images. This approach greatly improves
the conditioning on real sequences.

The “true scale” SIFT provides the information required to ensure
efficient relocalisation and loop closure capabilities using the FABMAP
bag-of-words representation [1].
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Figure 2: True scale. (a) A fixed 3-D region size between distances dy
and dqy projects to template sizes ranging from S,y t0 S,i, With size in
%. For d > djnay, a bigger 3-D size is used to provide image templates
within the same pixel size range. (b) Patch sizes according to distance.
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(a) New College without loop closure  (b) New College top view with loop closure

Figure 3: Estimated trajectory for the New College sequence (Tab. 1).

New College
Distance Travelled 2.26 km
Frames Processed 51K

Reprojection Error Min/Avg/Max

Accuracy without loop closure ~15-25m in (x-y) plane, ~15min z

Accuracy with loop closure ~10cm in (x-y) plane, ~10cm in z
Table 1: Results for the New College sequence.

0.03/0.13/1.01 pixels

The experiments demonstrate how a continuous relative representa-
tion (CRR) combined with careful engineering (true scale, subpixel min-
imisation and quadtrees) can provide constant-time precise estimates, ef-
ficiency and good robustness. An important aspect is that loop closure us-
ing CRR greatly improves the accuracy even without a global relaxation
as shown on the New College data set [5] (Tab. 1 and Fig. 3). Furthermore
the CRR framework is more than a simple re-parametrisation, it leads to a
different cost function that makes it possible to represent trajectories that
cannot be embedded in a Euclidean space as in the case of non-observable
ego-motion (e.g. if the platform takes a means of transport). This opens
up new prospects for mapping algorithms.
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