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Abstract

We present a novel approach for estimating body part appearance models for picto-
rial structures. We learn latent relationships between the appearance of different body
parts from annotated images, which then help in estimating better appearance models on
novel images. The learned appearance models are general, in that they can be plugged
into any pictorial structure engine. In a comprehensive evaluation we demonstrate the
benefits brought by the new appearance models to an existing articulated human pose es-
timation algorithm, on hundreds of highly challenging images from the TV series Buffy
the vampire slayer and the PASCAL VOC 2008 challenge.

1 Introduction
Pictorial structures (PS) [10, 21, 23] are a popular paradigm for articulated pose estimation.
Although PS are typically used for humans [10, 11, 21, 22, 23], they are well suited for
any articulated object class (e.g. cows [16] and horses [21]). PS are probabilistic models
where objects are made of parts tied together by pairwise potentials carrying priors over
their spatial relations (e.g. kinematic constraints). The local image likelihood for a part to be
in a particular position is measured by a unary potential carrying an appearance model of the
part (e.g. the torso is red). Inference in a PS involves finding the MAP spatial configuration
of the parts, i.e. the pose of the object.

The success of PS depends critically on having good appearance models, which con-
strain the image positions likely to contain a part. Because of their importance, previous
works have put great care in estimating appearance models. The most reliable way, but the
least automatic, is to derive them from manually segmented parts in a few video frames [7].
Another approach is to apply background subtraction, and use the number of foreground pix-
els at a given position as a unary potential [10, 17, 18]. The strike-a-pose work [22] searches
all frames for a predefined characteristic pose, easier to detect than a general pose. In this
pose all parts are visible and don’t overlap, enabling to learn good appearance models, which
are then used to estimate pose in all other frames (as part appearance is stable over time).

The above strategies cannot be applied to a single image as they require video. Moreover,
background subtraction is only reliable on static backgrounds, and strike-a-pose is limited to
videos containing a predefined characteristic pose. In an effort to operate on a single image,
with unknown part appearances, Ramanan [21] proposes image parsing, where inference
is first run using only generic edge models as unary potentials. The resulting pose is used
to build appearance models specific to this particular person and imaging conditions, and
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inference is repeated using both edges and appearance. Ferrari et al. [11] extend this ap-
proach with a preprocessing stage called foreground highlighting, which removes part of the
background clutter to restrict the space parsing needs to search for body parts. Foreground
highlighting depends on a generic detector to find the location and scale of the person in the
image.

In this paper, we present a new approach for estimating part appearance models from
a single image. As in recent pose estimation works [4, 11, 14], we use a generic detector
to determine an approximate location and scale reference frame on the object. The whole
object [8, 19] needs not be detected, as a part of it is sufficient (e.g. a person’s face [28]
or head-and-shoulder profile [11]). Two observations motivate our approach: (i) relative to
the reference frame, some parts have rather stable location (e.g. the torso is typically below
the face); (ii) the appearance models of different parts are statistically related. For example,
the lower arms of a person are colored either like the torso (clothing) or like the face (skin).
Only rarely they have an entirely different color. The legs of a horse have the same color as
its torso, as the whole horse is covered by the same fur. This implies that the appearance of
some parts can be predicted from the appearance of other parts.

We learn the relative location distribution of parts wrt the reference frame and the de-
pendencies between the appearance of different parts from training data. These relations are
exploited to generate appearance models for body parts in a new image. In this fashion, parts
which are well localized wrt to the reference frame (e.g. torso) help determining the appear-
ance model for more mobile parts (e.g. lower arms). If no inter-part dependencies exist, our
approach naturally degenerate to estimating each part independently.

2 Pictorial structure framework
We briefly review here the general framework of pictorial structures (PS) for human pose
estimation. A person’s body parts are tied together in conditional random field. Typically,
parts li are rectangular image patches and their position is parametrized by location (x,y),
orientation θ , scale s, and sometimes foreshortening [7, 10]. The posterior of a configuration
of parts L = {li} given an image I is

P(L|I,θ) ∝ exp

(
∑

(i, j)∈E
Ψ(li, l j)+∑

i
Φ(li|I,θ)

)
(1)

The pairwise potential Ψ(li, l j) corresponds to a prior on the relative position of parts. It em-
beds kinematic constraints (e.g. the upper arms must be attached to the torso) and, in a few
works, other relations such as occlusion constraints [26] or coordination between parts [18].
In many works the model structure E is a tree [10, 11, 21, 22, 23], which enables exact in-
ference, though some works have explored more complex topologies [6, 7, 18, 26, 27, 30].
Inference returns the single most probable configuration L∗ [6, 10], or posterior marginal
distributions over the position of each part [11, 21]. The unary potential Φ(li|I,θ) corre-
sponds to the local image evidence for a part in a particular position (likelihood). It depends
on appearance models θ describing how parts should look like. It computes the dissimilarity
between the image patch at li and the appearance model for part i. The appearance models
are parameters of the PS and must be provided by an external mechanism (see section 1).

A few recent works [4, 11, 14] first run a generic detector [8, 19] to find the approxi-
mate location and scale (x,y,s) of the person, and then run pose estimation only within the
detection window. This reduces the search space for body parts, making it possible to tackle
complex, highly cluttered images.
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Figure 1: Learning location priors. (a) A training image. (b) Detection windows (cyan), expected
window hallucinated from the stickman (magenta), window associated to the stickman (white), body
part rectangles (green) obtained by widening the stickman line segments (red). (c) Learnt location
priors. By estimating left/right arm parts together we increase the number of training examples (this
exploits the appearance similarity of symmetric parts, as done in [11, 15, 21]). (d) Pose estimate
returned by [21] for the image in (f) (without using foreground highlighting). (e) Initialization regions
for foreground highlighting. (f) Original image with foreground highlighting superimposed.

3 Better appearance models
In this paper we present a new method for estimating good body part appearance models from
a single image. These can be then plugged into any PS engine. For the experiments (sec-
tion 6) we build a full pose estimation system by plugging our appearance models into [21].

The input to our method are candidate detection windows output by a person (part) de-
tector. In the case of a detector tuned to a part (e.g. the upper-body detector of [11], or a
face detector [13, 28]), we enlarge the window by a predefined factor, to make it cover the
whole person (as done in [11]). For simplicity, in the remainder of the paper we say detection
window to indicate this enlarged area.

Our approach is motivated by two main observations: (i) the location of some parts
relative to the detection window W = (x,y,s) is rather stable (e.g. the torso is typically in the
middle of an upper-body detection window); (ii) the appearances of different body parts are
related (e.g. the upper-arms often have the same color as the torso).

As the two observations hold in a statistical sense, we learn (i) a location prior capturing
the distribution of the body part locations relative to W (section 3.1); (ii) an appearance
transfer mechanism to improve the models derived from the location prior by combining
models for different body parts (section 3.2). The training data consists of images with
ground-truth pose annotated by a stickman, i.e. a line segment for each body part (figure 1b).

After learning, our method is ready to estimate appearance models on new, unannotated
test images (section 3.3). Initial appearance models are estimated given W and the learnt
location priors. These models are then refined by the appearance transfer mechanism.

While we present our approach on human upper-bodies, it can be applied to any ob-
ject class for which a detection window can be provided (e.g. human full bodies [8, 19],
horses [25], sheep [9])

3.1 Training: learning location priors
For each body part i, we learn a location prior LPi(x,y) ∈ [0,1]: the prior probability for a
pixel (x,y) to be covered by the part, before considering the actual image data (figure 1a).
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torso upper arms lower arms head
torso 1 0.11 0.16 0
upper arms 0 0.89 0.31 0
lower arms 0 0 0.34 0
head 0 0 0.19 1

Table 1: Learned appearance transfer weights. Each entry wit denotes the contribution of part i
(row) to the appearance model of part t (column).

Importantly, pixel coordinates are relative to the detection window, so that LPs can be em-
ployed later on test images. Thanks to LPs, we can estimate initial appearance models be-
fore running a pictorial structure inference (as opposed to [21]). As in our implementation
appearance models are color histograms Pi(c| f g), they are obtained by weighting pixel con-
tributions by LPi(x,y) (details in section 4).

We learn LPs from training images with ground-truth pose annotated by a stickman (fig-
ure 1a). We first obtain detection windows by running the generic object detector on these
images. Next, we associate stickmen to detection windows as in figure 1b. Based on the de-
tection windows, we now project all training stickmen to a common coordinate frame, where
they are roughly aligned in location and scale. In this common coordinate frame, the LPs are
learnt in maximum likelihood fashion: LPi(x,y) is the fraction of training images where part
i covers pixel (x,y). LPs are computed for every pixel in the detection window.

Example LPs are presented in figure 1c. LPs for the head and torso are quite sharply
localized, while LPs for the arms are more diffuse. Interestingly, the location of lower arms
appears very uncertain a priori, matching our expectation that they can move around freely.

Notice how LPs are learned in the coordinate frame obtained by actually running the
object detector on the training images, as opposed to deriving ideal detection windows from
the stickmen. This procedure delivers realistic LPs, tuned to the behavior we expect at test
time, as they already account for the uncertainty in the localization of the detection window.

3.2 Training: transferring appearance models between body parts
Given an image of a person with lower arms behind her back, can we predict their color
based on the visible body parts ? Intuitively, we can, because we know that usually people
wear either a rather uniformly colored pullover with long-sleeves, in which case the lower
arms are colored like the torso, or wear short sleeves, in which case the lower arms have skin
color (the same as the face). While external factors might help our reasoning, such as scene
type (e.g. beach vs office) and season (winter vs summer), our ability to predict is rooted in
the intrinsic relations between the appearance of different body parts.

Inspired by the power of the above relations, here we learn a transfer mechanism to com-
bine the appearance models of different body parts. The input appearance models are derived
from LPs (section 3.1). The appearance transfer mechanism estimates the new appearance
model of a part as a linear combination of the input appearance models of all parts.

Learning mixing weights. The new appearance model AMT M
i for a part t is given by

AMT M
t = ∑

i
witAMLP

i (2)

where wit is the mixing weight of part i, in the combination for part t, and AMLP is the initial
appearance model (derived from the location prior).

The parameters of the transfer mechanism are the mixing weights wit . We learn them by
minimizing the squared difference between the appearance models produced by the transfer
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mechanism (AMT M
i ) and those derived from the ground-truth stickmen (AMGT ):

min
wt

∑
s

∑
k

(
∑

i
witAMLP

ski −AMGT
skt

)2

(3)

s.t : 0≤ wit ≤ 1, ∑
i

wit = 1

where i runs over all parts, s runs over training samples, and k runs over the components
of the appearance model (entries of a color histogram, in our case). Ground truth color his-
tograms are computed over rectangular part masks obtained by widening the line segments of
the annotated stickman by a predefined factor (figure 1b). Since this is a quadratic optimiza-
tion problem with linear inequality constraints, we find its global optimum efficiently using
quadratic programming [20]. The mixing weights wt are found for each part t separately by
solving a new quadratic program (3) for each part.

Table 1 shows the mixing weights learnt based on the location prior of figure 1c. Two
interesting observations can be made: (i) for parts that are rather stationary wrt the detection
window (torso, head), the refined appearance model is identical to the input model from LP;
(ii) mobile parts benefit from the contribution of stationary parts with similar appearance.
Upper arms models are improved by appearance transfer from the torso. Lower arms, which
have the highest localization uncertainty, get strong contribution from all other parts. This
because people tend to either wear uniformly colored clothes with long sleeves (contribution
from upper arms and torso), or wear short sleeves (contribution from head, which is also skin-
colored). These results confirm our intuition that exploiting relations between the appearance
of different body parts leads to better appearance models.
3.3 Test: estimating appearance models for a new image
After learning LPs and mixing weights, our method is ready to estimate good appearance
models for new test images. For clarity, we explain the procedure here for the case where
appearance models are color histograms. However, our scheme can be applied for other
appearance models as well, such as texture histograms.
Color models. The procedure entails three steps. First, the detection window W is trans-
formed to the standard coordinate frame where the LPs were learned from, by cropping W
out of the image and rescaling it to a fixed size. Second, initial color models are derived
from the LPs, as described in section 4. Third, the color models are refined by applying
appearance transfer as in equation (2), leading to the final color models Pi(c| f g).
Soft-segmentations. The color models estimated above characterize the appearance of the
body parts themselves. Following [21], we also estimate here a background model Pi(c|bg)
for each body part, derived from the complement of the LP (i.e. 1−LPi(x,y)). The fore-
ground Pi(c| f g) and background Pi(c|bg) models are used to derive the posterior probability
for a pixel to belong to a part i (using Bayes theorem, assuming Pi( f g) = Pi(bg))

Pi( f g|c) =
Pi(c| f g)

Pi(c| f g)+Pi(c|bg)
(4)

The posterior foreground probabilities are then used to derive a soft-segmentation of the
image for each body part, which is the cue used in the unary term of the pictorial structure
(Φ in equation (1), details in section 4).

4 Computing appearance models and soft-segmentations
Our implementation uses color histograms as appearance models. These can be derived from
a (soft-)segmentation of the image, and vice-versa.
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Color models from soft-segmentations. The contribution of a pixel (x,y) with color c to
the histogram is weighted by the value of the soft-segmentation at that pixel. We also apply
trilinear interpolation to let each pixel vote into multiple histogram bins. Each pixel con-
tributes to the eight bins closest to c. When estimating color models AMLP in equation (2),
the location prior LPi is used as the soft-segmentation. When estimating ground-truth color
models AMGT , we use the segmentation defined by the widened stickman (figure 1b).

Soft-segmentations from color models. The color models are used to derive foreground
posteriors Pi( f g|c), as in section 3.3. A soft-segmentation is obtained from them by applying
the inverse of the procedure above. The value of the segmentation for a pixel with color c
is interpolated over Pi( f g|c) for neighbouring colors. This soft-voting procedure makes
histograms more robust to color and brightness variation.

5 Image parsing and extensions
We briefly introduce here the image parsing PS engine [21] and its extensions [11]. In the
experimental section we will compare to both methods. Moreover, we evaluate the impact of
our appearance models on pose estimation by plugging them into the image parsing engine.

a) Image parsing [21]. In Ramanan’s work [21], body parts li are oriented patches of
fixed size, with position parametrized by location (x,y) and orientation θ (equation (1)).
The model structure E is a tree with edges Ψ(li, l j) carrying kinematic constraints. Since
the parts’ appearance is initially unknown, a first inference uses only edges in the unary
potential Φ. A soft-segmentation for each body part is obtained from the resulting marginal
distribution over the part position, by convolving it with a rectangle representing the body
part (figure 1d). Color histograms for the part and background are then derived from the
soft-segmentations. Finally, inference in repeated with Φ using both edges and color.

In this scheme, the first inference stage is the mechanism to obtain appearance mod-
els. Unfortunately, the edge-based model is not specific enough and the first inference stage
typically fails in the presence of sufficiently cluttered background [11], leading to poor ap-
pearance models and, eventually, incorrect pose estimation.

b) Extensions [11]. Ferrari et al. [11] extend [21] with two pre-processing stages aiming at
reducing the search space for body parts: (1) detection: find the location and scale of the per-
son with a detector generic over appearance and pose [8]; (2) foreground highlighting: apply
Grabcut [24] within the detection window to exclude part of the background clutter. The
initial foreground and background regions for Grabcut are manually designed to be likely
to contain the head and torso (for foreground) and away from this area for background (fig-
ure 1e). Only the image region returned by foreground highlighting is passed on to parsing
(figure 1f).

While these extensions resulted in a more robust system, working in heavily cluttered
images, the initialization regions for foreground highlighting are manually tuned to upright
human upper-bodies, requiring to be re-designed for every new object class (e.g. full-bodies,
sheep). Moreover, parts lost by foreground highlighting cannot be recovered during parsing.

c) Our pose estimator. In order to evaluate our appearance models, we use the following
pose estimation procedure: (1) detect windows on people using the detector of [11]; (2)
estimate part-specific color models as in section 3.3; (3) run image parsing [21] within the
detection window using directly our color models in the unary potential (i.e. skipping the
initial edge-based inference). Note that location priors are only involved in the estimation of
color models, and are not used to constrain the position of parts during parsing.
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Figure 2: Evaluation of segmentation induced by color models. Each curve is averaged over all
images in the Buffy test set (episodes 2,5,6). Points on the curve are obtained by thresholding to
the soft-segmentation with an increasing threshold. The Y-axis shows how much of the area A of the
ground-truth rectangle for a part is covered by the segmentation, in percentage. The X-axis shows
how much of the segmentation lies out of the ground-truth rectangle (i.e. on another part or on the
background), in multiples of A.

6 Experiments and Conclusions
We present a comprehensive evaluation on two levels: (i) the quality of the soft-segmentations
derived from the proposed appearance models; (ii) their impact on pose estimation.
Datasets. We experiment on video frames from the ‘Buffy: the vampire slayer’ TV show [11]
and still images from the PASCAL VOC 2008 challenge [9]. We use annotated stickman
data from episodes 2-6 of Buffy’s season 5, for a total of 748 annotated frames (available
for download [1]). This data is challenging due to the uncontrolled conditions, with very
cluttered images, often dark illumination, persons appearing at a wide range of scales and
wearing clothing of any kind and color (figure 3a,b,c). The PASCAL data is even more de-
manding, as it consists mainly of amateur photographs with difficult illumination and low
image quality (figure 3d). We have annotated 549 images 1 in the same way as the Buffy
data set: in each image one roughly upright, approximately frontal person is annotated by
a 6-part stickman (head, torso, upper and lower arms). The person must be visible at least
from the waist up.

Below we compare to [11] on their test set, consisting of Buffy episodes 2,5,6, and
learn location priors and appearance transfer weights from Buffy episodes 3,4 and PASCAL
images (this gives the LPs of figure 1c). When testing on the PASCAL images instead, we
re-train from all 5 Buffy episodes.
Soft segmentation. We compare the quality of part-specific soft-segmentations derived
from appearance models generated by several approaches (figure 2) on the Buffy test set.
These segmentations are important for pose estimation, as they form the unary term Φ of the
pictorial structure equation (1). We compare our method to three alternative approaches for
estimating color models: (a) edge-based parsing [21]; (b) edge-based parsing aided by fore-
ground highlighting [11]; (c) derive color models from the widened ground-truth stickmen
(AMGT in the equation (3)) – this provides an upper bound on the quality of the segmentation
that can be achieved with this kind of appearance models. For all approaches, we derive a
soft-segmentation from the color models as detailed in section 4. All approaches start from
detection windows obtained by the upper-body detector of [3, 11].

As figure 2a shows, on average over all body parts, we obtain better segmentations than
the competing methods already from the initial color models based on location priors (sec-
tion 3.1). Results improve further after appearance transfer (section 3.2). Interestingly, the
color models generated from LPs produce a rather poor segmentation of the lower arms,

1We released this new dataset on the web [2].
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[11] LP LP+AT LP+AT+FGH [12] LP+AT+FGH
Buffy 61.4% 65.5% 69.5% 72.2 % 74.5 % 78.1 %
PASCAL 52.2% 53.2% 54.5% 59.1 % 64.4 % 67.5 %

Table 2: Evaluation of pose estimation. Each entry reports correctness (always wrt to the new
evaluation protocol, see main text). The first four columns use the PS model of [11]: [11]: the
method of [11]; LP: our system using color models based on location priors (no appearance trans-
fer); LP+AT: our system using also appearance transfer. LP+AT+FGH: our full system aided by
foreground highlighting. The last two columns use the enhanced PS model of [12]: [12]: the method
of [12]; LP+AT+FGH: our full system aided by foreground highlighting.

which have the most diffuse LP (figure 2b). However, segmentation performance improves
substantially after refining the color models by appearance transfer, surpassing the compet-
ing approaches. As figure 2c shows, we obtain a considerable improvement also for upper
arms. Arms are especially interesting because they move more than head and torso wrt the
detection window, making their pose harder to estimate, and because they carry most of the
semantic pose information necessary to recognize gestures and actions. Importantly, even
the ground-truth color models don’t lead to perfect segmentation, because the same color
might occur on another body part or on the background. On average over all parts, the seg-
mentations derived from our color models are not far from the upper bound (figure 2a). The
largest margin left for improvement is for the lower arms (figure 2b).

As a side note, figure 2 also shows that foreground highlighting helps [21] finding better
appearance models, thus providing a deeper explanation for the improved pose estimation
results reported by [11].

Pose estimation. We evaluate the impact of the proposed appearance models on pose esti-
mation performance on the Buffy and PASCAL test sets. Performance is measured by PCP:
the Percentage of Correctly estimated body Parts. Following the criterion of [11], an esti-
mated body part is considered correct if its segment endpoints lie within 50% of the length
of the ground-truth segment from their annotated location. PCP is evaluated only for stick-
men that have been correctly localized by the initial upper-body detector (according to the
standard intersection-over-union > 50% criterion from the PASCAL VOC challenge; this is
the same criterion used to associate detections to stickmen when learning LPs, figure 1b).
This protocol allows to cleanly evaluate the person detection and pose estimation tasks sep-
arately 2 . Note how the pose estimation algorithm we use [21] operates on individual video
frames, ignoring the temporal dimension.

We compare our new pose estimator (section 5c) to [11] without multi-frame stages 3

(section 5b), which did not bring an improvement in later investigation [29]. On the Buffy
dataset, the upper-body detector [11] correctly detects 85% of the 276 annotated stickman.
PCP is evaluated on these 235 frames. As table 2 shows, the color models from our complete
method (LP+AT) raise PCP by 8.1% over [11]. Interestingly, color models from LPs alone
already lead to a 4.1% gain, confirming that both ideas contribute to the overall improvement.
Finally, adding foreground highlighting [11] to our pose estimator (as in section 5b), further
raises performance, giving an overall improvement of 10.8% over [11].

2We modified the protocol used in [11], to make it simpler, more reproducible, and defined fully on still images
(not video). In [11] we computed PCP over all images with any detection, not necessarily on the stickman. More-
over, [11] tracked detections over time, and the track with the largest number of correct body parts was considered in
the evaluation. This under-estimates PCP of persons split over two tracks. In the new protocol, each image is eval-
uated independently, and only detections on the stickman are considered. Note how the new protocol corresponds
to the one in the independent work of [5]. A Matlab implementation of the evaluation routine is available [1].

3Performance is higher (61.4%) on Buffy than what reported in [11, 29] (57.9%) due to the new protocol.
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Figure 3: Example results. Color coding: head = purple, torso = red, upper arms = green, lower
arms = yellow. (a1-3) a few failures of [12] on Buffy. (b1-3) the corresponding improvements brought
by our LP+AT+FGH method. (a4-5) two more examples of our method on Buffy. The rest of the figure
covers the PASCAL dataset. Notice the variety of poses and how our method makes no assumption
about skin color (e.g. image c-5 contains a dark-skinned person), although only Caucasians are in the
corresponding training set of Buffy images). (a6) a failure due to occlusion of the upper arms; (b6)
a failure due to a wrong scale estimate of the detector; (c6) interestingly, our algorithm confuses the
lower arm of the leftmost person with his neighbour’s leg.

For the PASCAL dataset we complement the upper-body detector [11] with a multi-scale
version of the face detector proposed by [13]. This allows to detect more people in this very
challenging dataset, featuring harder imaging conditions and a wider variety of poses than
Buffy (figure 3d). Overall, 73.1% of the 549 annotated persons were correctly detected. Pose
estimation performance is evaluated on these images only. We start the pose estimator from
each detection window independently. If there is more than one correct detection window
for a stickman (e.g. one from the face and one from the upper-body detector), we consider
the pose with the largest number of correct body parts. As table 2 shows, our full system
(LP+AT+FGH) improves over [11] by 6.9% correctly estimated body parts.

Recently we have proposed an enhanced PS model [12]. Employing the new appearance
models of this paper in conjunction with the PS model of [12], improves also over [12]
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(table 2). Finally, we obtain a last performance boost by learning the proper scale factor
between a detection window and the body part sizes expected by the PS model. This leads
to 72.3% on PASCAL and 80.3% on Buffy (compared to about 74% by both works [5, 12]).

Conclusions. We have presented a new approach for estimating appearance models from
a single image, and demonstrated experimentally that they considerably improve the perfor-
mance of an existing PS engine [11, 12, 21] on two uncontrolled, very challenging datasets [9,
11]. We obtain better performance on the Buffy dataset than the two different state-of-the-art
approaches [5, 12]. In future work we plan to include the more distinctive body part detec-
tors of [5], and tackle open issues such as occluded body parts and joint pose estimation of
multiple nearby people (which can confuse the pose estimator).
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