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Abstract

We present an optical flow calculation method based on the variational approach. The
method uses an implicit non-linear numerical scheme that makes no assumption on the
analytical form of the optical constraints and combines local and global smoothness cri-
teria in a natural way. Defining the optical constraints with normalised cross-correlation,
we obtain a technique that is robust against illumination changes in colour and greyscale
images.

1 Introduction

Optical flow describes the apparent motion observed in a sequence of images. This, in a nat-
ural way, characterises the motion with a displacement field. (See Fig. 1.) The optical flow
concept arose from studies of biological visual systems [6]. Several examples can be pre-
sented to emphasise the importance of motion in visual sensing. Studies of visual perception
[5] revealed that humans use motion directly in recognising aspects of their environment.
Insects are essentially blind to anything that is standing still and the camouflage strategies of
some animals are effective only as long as they are not moving.

The observation that motion adds relevant information to visual patterns explains the
persisting effort in computer vision and related research areas to improve motion analysis
and optical flow estimation methods. This has a wide range of applications in fields such as
object tracking, robotics, human-machine interaction, driver assistance systems, as well as
video compression, super-resolution, and dynamic texture analysis. The main challenge of
any vision system lies in integrating local motion information into a coherent global inter-
pretation.

The most widespread approach to define and calculate an optical flow is the use of the
brightness constancy assumption which assumes that the brightness of a small, moving im-
age region is constant. However, this holds only for Lambertian surfaces at constant illumi-
nation conditions. Optical constraints on their own, even if illumination changes are taken
into account, are usually insufficient for computing a flow without ambiguity unless the mo-
tion estimation is extended to larger regions [8].
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Figure 1: Colour-encoded ground-truth optical flow of the st reet sequence [11].

This problem known as the aperture problem [18] is usually solved by introducing
smoothness constraints on the flow field. Based on the type of employed smoothness con-
straints, there are two major groups of methods [3]: (1) methods applying global and (2)
methods using local smoothness constraints. The first group includes the variational meth-
ods, derived from the Horn-Schunck method [9]. The methods of the second group are
usually based on the block matching and the structure tensor schemes, which can be traced
back to the Lucas-Kanade approach [10].

In this article, we present a novel numerical scheme for variational optical flow calcula-
tion that makes no assumption on the analytical form of the employed optical flow constraint.
The scheme works with different smoothness criteria combining local and global methods
in a natural way. We use this framework to formulate an illumination-robust optical flow
calculation method based on normalised mean-shifted cross-correlation.

2 Variational optical flow calculation

Among numerous techniques used for motion estimation, the variational optical flow cal-
culation methods are currently the most accurate. The variational problem for optical flow
calculation is usually formulated as finding the displacement function u(x) that minimises a
functional of the form

F(u) = /X (E(x,u) +AS(Vx®u)), (1)

where E(x,u), x = (x,y), u= (u,v), is a function describing optical constraints, S a function
of the derivatives uq,vg accounting for the smoothness of the flow. ® denotes the dyadic
(outer) product of two vectors, while A is a parameter. Here and in what follows o, 8 €

{x,»}.

The solution of Eq. (1) is given by the Euler-Lagrange equations
E,— A (qux + Syuy) =0,
Ey— A (Sx, +Sp,) =0.

Notice that we have a set of two coupled partial differential equations. To find the optical
flow u, these are solved numerically.
For simplicity, we assume that

1 1
S = 5(\qu|2—|— \va|2) = EZ (utzl —&—v(zx). 2)
a

Then from the Euler-Lagrange equations we have, in vector notation,

VoE — 2Au = 0, 3)
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where the Laplacian A is applied to each component of u.
Most of the methods use an iterative solver that improves the optical flow estimate ob-
tained in a previous step as u — W', repeating the procedure until a steady state is reached.
The Laplacian of the optical flow in v’ is usually discretised as

Au ~ i —4u, 4

where a(x,y) =u(x—1,y)+u(x,y—1)+u(x+1,y)+u(x,y+1) is the central sum calculated
from the current optical flow estimate u.

For finding u/, at each image point x we have to solve the two-dimensional root-finding
problem

g —A{u—4u)=0, )

where g’ is VyE computed in w’. Observe that g’ is not necessarily linear. However, we can
choose E such that it becomes linear.

Horn and Schunck [9] proposed

EHS = %(It +MIX+VIy)2 = %(It +UVXI)2, (6)

where I(x,7) is the image brightness. The equation I, + uVxl = 0 is a first-order Taylor

approximation of brightness constancy between two consecutive images in a sequence, I(x+

u,7+ 1) =I(x,7), hence minimising Eys approximates the brightness constancy assumption.
The root-finding problem formulated in Eq. (5) is easily solved because

VuEns = (I +uVxl) Vyl, @)
thus introducing the notations § = I;VxI and H = Hyg = Iolg, we have
g =g+Hu. (8)
Solving Eq. (5) results in
o :Afl(lﬁ—g), )

where A = H+4AL I being a unit matrix.

Observe that A and g are independent of u and they can be pre-computed for each image
point. This gives a very efficient method [9]. The accuracy can be enhanced by applying
a multiscale coarse-to-fine scheme [2], which compensates for the omission of higher-order
terms in the Taylor expansion of the brightness constancy equation.

The above scheme can be extended to multiple components I”* using

12(1{”+uvxz"’)2. (10)

Eys = >

m
It can be shown that with g =Y, [["Vix[" and H=Y, 131;;1 we arrive at the same iterative
equations as above.

The image components /™ can be the RGB colour channels, the brightness /, the gradients
I, 1, or the Laplacian Al. One can also go from (R, G,B) to the spherical coordinates and
use (p, 0, ¢) as image components. Combining various components gives a set of different
methods [20] that can improve the accuracy of the optical flow [14] and handle changes in
illumination [12].

The scheme can be extended to non-linear case [14]. More complex smoothing term [14]
and even motion segmentation can be employed [1] to improve the accuracy. (For a recent
survey see [20].) In what follows, we present a non-linear scheme which, contrary to the
existing methods, makes no assumption on the analytical form of E.
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Figure 2: Integer-valued velocity grid and step tolerance.

3 A novel numerical scheme

Our scheme is similar to the Horn-Schunck scheme, however, the root-finding problem for-
mulated in Eq. (5) is solved with Newton’s method, while E is calculated only for integer-
valued velocities and bicubic interpolation is used to find its first- and second-order deriva-
tives.

For this, we consider u(*?) = [u], v(*0) = | v| and its integer-valued neighbourhood (see
Fig. 2)

M(lj) u(ovo) + i

Pl 300

where i, j € {—1,0,1,2}. B
At given x, we calculate E for u>/) and denote these values by

E{Y = E(x,u)).
The first-order derivatives of E at u(>/) can be approximated as
1 o o
E, ~ 5 |:El(lt+1,j) _El(lt 1,])} 7

E, ~ % BTV~ BV

The cross-derivative is given by
1 s o e o
E, ~ Z {El(lz+1,]+l) 7El(ll 1,]+1)El(ll+1,./ 1) +El(ll 1,j 1)} '

After computing the above derivatives for all i, j € {0, 1}, we can calculate the coefficients
Cy of bicubic interpolation', which approximates E as

3

3
E(x,u) ~ Z ZCklﬁkﬁl,

k=01=0

ICalculating Cy; amounts to multiplying a 16 x 16 constant matrix with a 16 dimensional vector. For details
see [16].
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where & = u—u(®9, Using this interpolation, we can easily estimate the derivatives of E at
any u in the cell delimited by the velocity points (0,0), (0,1), (1,0), and (1,1). (See Fig. 2.)
According to this, the first-order derivatives are

3 3
E,~ Y Y kCyid v,
k=01=0
2, & kal—1
E,~ ) Y 1Cua* v,
k=01=0
and the second-order derivatives are
32 k—241
Ewrm Y, Y k(k—1)Cui >V,
k=01=0
3, & kal—2
E, =~ Zl(l_l)Cklﬁﬁi )
k=01=0

3 3
En~ Y Y kiCua 1!
k=01=0

As the bicubic interpolation maintains the continuity of first-order derivatives across cell
boundaries, we can solve the non-linear root finding problem given in Eq. (5) with Newton’s
method.

Introducing the notations g = VyE and H = E,,, where v, Vv € {u,v}, we have

g ~g+H( —u),
which we plug into Eq. (5) and solve
g+H(u —u)—2(a—4u) =0.
This gives the fixed-point equation
u=A"(Aa-g+Hu), (11)

where A = H+4A1. With a multiscale approach [2] common to variational optical flow
methods, we assure that the iteration starts from a point close to the final solution and thus, if
the gradients E,, E, are not too large, the iteration either remains in the initial cell or moves
smoothly to a neighbouring cell.

If the gradients are too steep, typically for regions where intensity changes cannot be
modelled with optical flow, numerical instability may develop. To overcome this, we intro-
duce a step tolerance and clip u’ to the corresponding tolerance region. (See Fig. 2.)

Because the iteration evolves towards a steady state and localises, the value of the step
tolerance does not affect the result. It only makes sure that in any problematic point the
iteration continues in a neighbouring cell. The ‘interaction’ with neighbouring pixels (i.e.,
the smoothness constraint) enforces a solution for any such point.

Observe that g and H depend on u and cannot be pre-computed in this approach. How-
ever, they are obtained fast from the bicubic interpolation, which has to be reinitialised only
if the iteration moves outside the current cell. When changing to a neighbouring cell, as a

further advantage, we do not have to recompute all the 16 El(.i’j ) values, only the 4 new ones.
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4 Illumination-robust optical flow

The scheme presented above makes no assumption on the analytical form of the optical con-
straints. In this section, we present a choice for the data term E that results in an illumination-
robust method. For this, we will use cross-correlation in a small window as the metric in E.
Recently, a fast, explicit linearised variational flow algorithm based on cross-correlation was
proposed [13] and shown to be robust to changes in illumination and visibility. Earlier, a
sophisticated non-linear variational framework using different statistical criteria, including
cross-correlation, had been applied to elastic image matching [7], motion compensation [19],
and 3D scene flow estimation [15].

We consider a sequence of multicomponent images I (x,) and a small pixel neighbour-
hood N(x). The average pixel value in this block is

I (x,1) = mx,r),
N 2
and the variance is
1 _
2 m( ! m
Gm(xﬁ)i I (th)_l (Xat) y
Wl 2, )

where |[N(x)| is the area of N(x).
In each point x, we take the cross-correlation

Cn= Y I"(X4ur+1)I"(¥1) (12)
x'eN(x)

of the mean-shifted normalised pixel values

I"(x',t) —I"(x,t)
On(X,1)

X0 = (13)

and define

ECC:ZWm|1_Cm , (14)
m

where w,, is the weight of the component m. Observe that C,, is invariant to any linear

change in I"". In the next section, we demonstrate by experimental results that Ecc used in

the numerical scheme presented before leads to an optical flow calculation method which is

robust against changes in illumination.

5 Tests and results

To demonstrate the robustness of Ecc, we compare the above illumination invariant scheme
to the Horn-Schunck method [9] and a method based on our implicit non-linear scheme using
the L; metric:

Epitf = ZWmDma (15)
m
1
D, = m ! 1) -1"(x',0)|. 16
T Y, [Mutx 1) —1"(x )| (16)

x'eN(x)
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Ecc

Horn-Schunck Episr
A =0.03 A =0.005 A=3
Figure 3: Estimated optical flow and angular error for the original st reet sequence. (See
the ground-truth in Fig. 1.)

Notice that Ep;g is based on block matching similar to Ecc, however, Epjg is not invariant
to intensity changes.

The results obtained for the st reet sequence [11] are presented in Fig. 3. We executed
1000 iteration steps on a Gaussian pyramid of 3 levels and scale factor 0.5. The step tolerance
was set to 50%. The size of N was 11 x 11. (The values of A are given in Fig. 3.)

We compared the computed optical flow to the available ground-truth data [11]. The
angular error [3] is calculated as

ud+v+1

arccos s
V(@22 + 1) (@2 +92+1)

where u is the estimated flow, @ the ground-truth flow. Fig. 3 shows that both Ep;g and Ecc
perform significantly better than the Horn-Schunck flow.

To test the robustness to illumination changes, we modified the second image of the
processed image pair using the transformation

I"(x)=1"(x)[1+1.5&(x)] +10&(x),

where & (x) = exp [— ‘XS_O’(‘)%‘Z} and xo = (100, 135). (See Fig. 4.) The original I"*(x) is an
integer in the interval [0,255], and we re-quantised the transformed values to [0,255], too.
We will call this artificial illumination change the added effect.

The obtained results are shown in Fig. 5. Both the Horn-Schunck flow and Ep; fail
completely to handle these intensity changes. However, the method based on Ecc provides
an optical flow close to the ground-truth.

We are currently testing the proposed framework for different image sequences, compo-
nents and metrics. Tab. 1 shows selected comparative results for the st reet sequence. In
the table, each pair of numbers gives the average angular error (AAE) without illumination
change (left) and with the change (right). The first row presents results obtained using cross-
correlation in a small window as defined in Eq. (14). In the second row, the results were
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Horn-Schunck Epise
Figure 5: Estimated optical flow and angular error for the st reet sequence with illumina-
tion change. (See Fig. 4.)

obtained using the L; metric. For compatibility with the existing point-wise methods, the
window size was set to 1. (Recall that the results in Fig. 3 and Fig. 5 were obtained with the
window size 11.) In this way, we can mimic different existing algorithms using the proposed
implicit scheme. In all cases, the standard smoothness term defined in Eq. (2) was used.
The columns of Tab. | represent different combinations of multiple components, that
is, colour codes and other images features. In particular, the entry L|—R, G, B is essentially a
colour version of the Horn-Schunck functional [9] using the L; metric. As already discussed,
the Horn-Schunck algorithm works reasonably well for the original data but fails when the
effect is added. The cross-correlation version of the algorithm CC-R, G, B is robust. The
robustness of the L variant can be improved by using the spherical representation of colour,
p,0,0, as proposed by Mileva et al. [12]; however, the accuracy of Li—p, 0, ¢ is lower
than that of CC—R, G, B. (Note that this is not an implementation of the algorithm [12], and
the added effect is also different.) Another option is to add to the energy term the first and
higher order derivatives of the image function, which leads to the variants L|-R, G, B, 1,1,

metric R.G.B 0.0,0 R,G.B, 1,1, | II,1,Al
cC 524°  5020° | 5.22° 5.28° | 4.23° 4.24° | 436° 4.34°
L 5.00° 16.91° | 7.20° 7.87° | 4.98° 6.77° | 5.05° 5.80°

Table 1: Average angular errors for the st reet images without effect (left number) and
with effect (right number) for different multiple components and metrics.
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image 1 image 2 image 2 with effect

Figure 6: Two images of the of fice sequence [11] and the second image with illumination
change.

metric R.G,B 0.0.0 R,G,B, 1,1, I,1,,1,,Al
cC 9.01° 9.47° | 9.68° 9.62° | 6.07° 7.66° | 5.27° 651°
Ly 8.58° 15.67° | 9.91° 10.53° | 8.62° 10.75° | 8.77° 7.88°

Table 2: Average angular errors for the of fice images without effect (left number) and
with effect (right number) for different multiple components and metrics.

and L-1,Iy,1,,Al that are similar in spirit to modern precise algorithms like [4]. Observe,
however, that cross-correlation yields higher precision in all cases except for the effect-free
R,G,B where L is slightly better.

Tab. 2 shows similar comparative results for the of fice sequence [11] illustrated in
Fig. 6. The same artificial illumination change has been added to the first image to test the
robustness of the different metrics and combinations of multiple components. The errors are,
generally, somewhat larger, but the main trends are the same as for the st reet sequence. In
particular, cross-correlation again provides robistness and improves precision in almost all
cases, while the most precise method for the of fice sequence is the greyscale algorithm
CC-I,1,,1,,Al. This means that cross-correlation based optical flow can handle illumination
changes in greyscale sequences, while the method [12] is only applicable to colour data.

6 Conclusion

We presented an implicit non-linear numerical scheme for optical flow calculation based on
the variational approach and proposed a non-linear optical constraint robust against changes
in illumination. The presented optical constraint is formulated as block-matching based on
normalised cross-correlation.

The algorithmic complexity of the scheme depends only slightly on the block size, be-
cause the optical constraints are evaluated on-demand only for integer-valued velocities. The
presented iterative solver uses a bicubic interpolation over this discrete velocities. The itera-
tive process, when close to the steady state, localises and thus recalculating the interpolation
is not needed over a large number of steps.

Preliminary results show that the scheme can outperform some traditional methods, it can
produce high accuracy optical flow, and works for both single and multicomponent images.
In particular, optical constraint with normalised cross-correlation is robust to illumination
changes in greyscale data when the approach [12] based on the photometric invariants of the
dichromatic reflection model [17] is not applicable.

A more comprehensive evaluation is in progress. Further research should also investigate
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the possibility of using other illumination invariant optical constraints and the applicability
of the method to real-world motion estimation problems.
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