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Transparent refractive objects are one of the main problems in geo-
metric vision that have been largely unexplored. The imaging and multi-
view geometry of scenes with transparent or translucent objects with re-
fractive properties is relatively less well understood than for opaque ob-
jects. The main objective of our work is to analyze the underlying multi-
view relationships between cameras, when the scene being viewed con-
tains a single refractive planar surface separating two different media.
Such a situation might occur in scenarios like underwater photography [2].
Our main result is to show the existence of geometric entities like the
fundamental matrix, and the homography matrix in such instances. In
addition, under special circumstances we also show how to compute the
relative pose between two cameras immersed in one of the two media.

Projection Matrix The approach we take is along the lines of [1]. Rep-
resenting a line by its Pliicker coordinates, we first back-project a point to
get a line L. Then we extract the projection of an arbitrary line L; onto
the camera by analyzing the condition for the intersection of L and L. As
it turns out, a line L; projects onto the image after refraction, as a quartic
curve. This is expressed using a projection matrix, that relates the lifted
Pliicker coordinates of the line L; to the coefficients of the quartic curve,
represented by c.
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In general the matrix P is of dimensions 15 x 15, whose elements
are bi-quadratic in terms of the external parameters of the camera, and a
quadratic function of the relative refractive index.

Fundamental Matrix In deriving the projection matrix, we computed
the projection of an arbitrary 3D line onto the image. We derive the fun-
damental matrix by replacing this line with the back-projection of an im-
age point from the second camera. This gives us a matrix of dimensions
15 x 15 that relates the lifted Pliicker coordinates of the image points of
the two cameras as follows
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where (qy,q) represent rotation-normalized image coordinates in the two
images. The fundamental matrix has elements that are quartic in terms of
the relative refractive index and bi-quadratic in the external parameters of
the two cameras.
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Homography In the case of homography relating a 3D plane to its im-
age, a simpler representation of the transformation can be derived when
the system of rays in consideration is parametrized using the incident and
refracted angles (Figure 1(a)). Observe that all the refracted rays sharing
the same angle of refraction converge to a single point (which is different
for different angle values) even in 3D. Thus specific set of conics on a
scene plane project onto the image, as conics. We express this relation-
ship as a matrix that relates a point on the image to a point on the scene
plane.
This is expressed in the equation for the homography matrix

S~ Hg,x 3)

where 0 is the incident angle, x is the image point and S is the corre-
sponding point on the scene plane.

This matrix is of dimensions 4 x 3 and is a function of the normals
of the refractive plane, the scene plane, the relative refractive index, the
incident and refracted angles and the external parameters of the camera.
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Figure 1: (a) shows an illustration of refraction. The refracted lines, back-
project to meet at several distinct virfual points, even in 3D. These lines
cut by the image plane form conics.(b) shows an image of “Snell’s Win-
dow”, a conic that represents the horizon of the outside world. Here the
conic is observed at the periphery of the image, beyond which the image
blacks out due to total internal reflection. Photo courtesy gerb’s photo-
stream, http://www.flickr.com/photos/gerb/196296131/

Snell’s Window In the specific case when the cameras are immersed
in a denser medium than the scene, an interesting phenomenon known
as the Snell’s Window, is observed (Figure 1(b). The unique property of
this window is that its equation in the image reveals information about
both the refractive plane as well as the refractive index. In particular, the
equation relating the conic to camera and refraction parameters is given
by
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where X is the image coordinates, v is the refractive plane normal, R is a
rotation matrix (camera external parameter) and A is the relative refractive
index. This shows that the periphery is a conic in image coordinates. The
term R v represents the refractive plane normal in the camera coordinate
system. One of the main advantages of Equation 4 is that one of the
conic’s eigenvectors is the normal of the refractive plane.
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since v' v = 1. In fact, its easy to show that the eigenvalues of the above

matrix are %, -1+ %, -1+ %, which means the only non-repeating
eigenvalue gives information about the relative refractive index.

Relative Pose Finally, in the above mentioned scenario, it is also possi-
ble to solve for the relative pose when more than one camera is present.
To do this, we observe that rotation and refractive index can be obtained
by the above method. Rotation is only partially recovered. In all, for two
cameras, 4 parameters comprising 3 translation and 1 rotation parameter
remain to be recovered This can be done by using the Fundamental matrix
equation and 4 correspondences.

Summary We have shown a number of interesting theoretical charac-
teristics of planar refraction, and its relation to multiple view geometry.
This helps us better understand situations like underwater vision with flat
ports. We hope our analysis can provide useful benchmarking for struc-
ture recovery and other image analysis algorithms in such cases.
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