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Abstract

The success of skeletal model in object recognition from segmented images motivates
the development of a skeletal model for top-down object recognition and segmentation.
We propose a novel skeleton-based generative shape model which is suitable for effi-
cient search using dynamic programming (DP). We have devised an exclusion principle
enabling DP to discover multiple instances of an object category in one pass. Finally,
we have improved an oriented chamfer distance for rank-ordering generated hypotheses.
Improved or comparable recognition and segmentation results are reported on the ETHZ
data set.

1 Introduction
Category-specific recognition and segmentation generalize appearance or shape cues. Appearance-
based methods generally rely on feature points [34, 35] and have had remarkable success in
detecting the presence of objects [3, 7, 10, 14, 24, 28, 30, 31, 47, 52, 56] and in object local-
ization [3, 28, 31, 53, 55]. However, these methods can be limited because stable key features
are not always abundantly available, e.g., in low lighting condition, in bright backgrounds,
objects with large homogeneous patches, objects in low resolution imagery [40]. More im-
portantly the role of appearance may become severely diminished as the intra-category vari-
ation increases with respect to inter-category variation. For example, in recognizing bottles
and cups the surface markings are simply too varied to be useful [37]. In these cases, the
silhouette and the internal markings which are consistent across the category become the
primary source of information for recognition. In general, it can be argued that function
is more dependent on object form than its appearance [32, 48, 49, 50], thus motivating
augmenting the role of appearance with shape.

Two interconnected key issues emerge in the use of form for recognition, which moti-
vated a skeletal representation. First, observe a repeatability/distinctiveness tradeoff in the
choice of feature: the more complex a contour feature is the more chance it has to merge
with background clutter, but at the same time it is more distinctive in the selection of a
category and can also delineate the object better. For example, simple edges have been
used in annular regions [23, 25], in pairwise relations [32], and in a deformable, non-rigid
point matching approach [2, 3, 5]. Two independently developed models use code books
of boundary fragments learnt from training data under boosting [36, 37, 38, 45, 46]. The
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Figure 1: Exemplar shapes (a) define prototypical shock graph topologies (b) and a range of metric
variation which when searched over a new image (c) can detect and delineate category instances (d).

k-adjacent segments (kAS) model uses paths of length k on a contour segment network of
grouped and polygonized Berkeley edge map as basic features [15, 17], with a pair k = 2
being optimal (PAS). This paper suggests the use of an even more complex feature, a visual
fragment [26], which is a pair of contour fragments corresponding to a skeletal segment to-
gether with the region between them, Figure 2. This use of a pair of contours is more general
than PAS [17], as they are not restricted to be adjacent, and can represent non-linear curve
geometry. They also retain order along contour in contrast to [45] which is an unorganized
collection of edges. In addition to contour geometry, visual fragments also represent the re-
gion that is sandwiched between two contour fragments, thus increasing the distinctiveness
of this feature for category-level recognition.

A second issue is on the use of a shape model to represent the spatial relationship among
features whose role becomes more critical the simpler the feature is. The use of extrinsic de-
formations such as thin plate spline (TPS) and shape context in matching [2, 5, 16, 18, 33,
44, 57] is a popular method of representing relative spatial relationship. However shape con-
text does not behave well under large deformation such as articulation and occlusion. The
star model of [36, 37, 45, 46] is restricted to rigid objects and also suffer under articulation
since training with articulated objects would smear the proposed object center, e.g., the head
of a horse or giraffe in relation to its body. Finally, training for boundary fragment code-
book can only handle a modest degree of shape deformation, as is the case with Geometric
Hashing [29] and Hough transform. In contrast, the skeletal/shock graph model is robust
under articulation and bending as evidenced by the precision-recall curve comparing it to
the shape context [43]. The shock graph representation of a closed shape is a distributed
pictorial structure-type representation so that it does not rely on single object center, and it
can handle a large variety of shape deformations.

Our approach to category-specific object recognition and segmentation, Figure 1, relies
on a number of components. First, it requires the availability of a generative shape model
(i) capable of accurately describing a wide range of free-form shapes, (ii) featuring a degree
of invariance with within-category variations, and (iii) achieving this via a low-dimensional
space. Second, it requires an efficient search methodology so that generated shape hy-
potheses can be examined against the image and rank-ordered. Third, the ranking-ordering
requires an objective function to capture the extent of support each hypothesis receives from
the image. We given an overview of each in turn.

First, a generative model for shape based on the shock graph is proposed in [54], where
given a fixed shock graph topology, shapes with piecewise circular arc boundaries are gen-
erated from a low-dimensional parametric space, Figure 2. While this generative model is
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highly suitable for object recognition, the intrinsic nature of the representation from an ex-
trinsic reference node leads fragments to be dependent on the chain fragments back to the
reference node. This inter-dependence of fragments forces combinatorial search in the seg-
mentation application. A contribution of this work is to define a generative model of shape
where fragments are not dependent on each other, Section 2. Given a number of exemplars,
category prototypes are generated by capturing the common shock graph topologies and a
metric range associated with each. This allows for the generation of synthetic examples,
Section 3.

Second, the decomposition of shape into subshapes at nodes allows for a dynamic pro-
gramming (DP) approach to search for the optimal shape hypothesis in the image. However
the traditional DP cannot find multiple category instances in the same image since it only
gives the globally optimal solution. We devise an exclusion principle that allows for de-
tecting multiple category instances without having to run DP multiple times. Third, the
traditional oriented chamfer matching is modified to improve on over-counting and under-
counting drawbacks, as well as to include a more global penalty for groups of edges. In
addition, the cost function is tailored to each specific fragment based on observation in the
exemplar space.

Finally when the three component come together, the presence of object category in-
stances can be identified and delineated in the image. Object recognition performance on the
ETHZ dataset shows improvement on three categories, and is comparable for the remain-
ing two, the mug and apple logo. We have also assessed segmentation coverage/precision,
showing improvements in the same three categories, Section 6.

2 Fragment-Based Generative Model for Shape
The large within-category shape variation can be effectively captured by a variant of the
medial axis, the shock graph: shock graph topology describes the shape qualitatively while
shock segment metric attributes describe the shape boundary in details. Trinh and Kimia [54]
proposed a generative model to synthesize shapes sharing a given shock graph topology from
a fairly low number of parameters. The model approximates a shape boundary with a piece-
wise circular arc spline, which is dense in the space of smooth contours, and breaks a shape
into fragments, each of which is bounded by a pair of circular arcs, Figure 2a. Utilizing the
continuity constraints between adjacent fragments to reduce away dependent parameters, the
model devises a set of independent parameters capturing all variations of shapes sharing the
given shock graph topology. The parameter set consists of: (i) the extrinsic parameters re-
siding at one “reference” node encoding the position, orientation and size of the object and
(ii) the intrinsic parameters distributed among the nodes and edges of the graph, encoding
the local intrinsic properties of the shape, e.g., stretching, bending, bulging.

The separation into intrinsic and extrinsic parameters makes the model powerful for ob-
ject recognition since bending or stretching at any part of the shape corresponds to changing
just one or two intrinsic parameters. However, this arrangement also results in an inter-
dependence among fragments since describing each fragment’s boundaries requires all the
extrinsic and intrinsic parameters along the fragment chain back to the “reference node.”
This dependency renders the model unsuitable for object segmentation as it leads to combi-
natorial search.

We propose a model where each fragment is fully described locally by the parameters at
its adjacent nodes, eliminating the inter-dependency between the fragments. Specifically, a
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(a) (b) (c) (d)
Figure 2: Trinh and Kimia’s shape model [54]: (a) A shape boundary is approximated with a closed
piecewise circular arc spline (PCAS) and is decomposed into “shape fragments” distributed along
its medial axis. (b) Shape articulation and other variations can be realized by changing just a few
parameters. (c) An A2

1 fragment. (d) An A∞ fragment.

shape is represented by its shock graph topology, G = (V,E) where V = {v0,v1,v2, · · · ,vN}
and E = {e1,e2, · · · ,eM} are the sets of shock nodes and shock edges, respectively, and
where the degree of nodes is generically 1, 2, or 3 [20]. Here we restrict a shape to be a
simple closed contour so that the shock graph G is always a (rooted) tree, M = N. The shock
graph topology naturally decomposes a shape into fragments, defined as the influence zone
of a shock segment (shock graph edge), i.e., the region bounded by the boundary portions
corresponding to the shock segment and the orthogonal rays from the shock nodes to the
boundary contours, Figure 2(c-d) . There are two types of fragments in the domain of shapes
with circular arc spline boundaries: an A2

1 fragment corresponding to a curve segment of the
shock graph, Figure 2c, and an A∞ fragment signifying the end of a shock branch, Figure 2d.

Parameter set Fragments can be reconstructed from the local information at their end
nodes: an A2

1 fragment is bounded between two degree-2 nodes and an A∞ fragment can
be considered as a special case of an A2

1 fragment where the two shock nodes coincide and
the two boundary points corresponding to one shock node also coincide. The local first-
order geometry of the shape boundary reconstructed from any shock node vi requires the
following [20]

Z = {zi = (xi,yi,ψi,ri,Φi) , i = 1, · · · ,N}, (1)

where (xi,yi) specifies the position of the node vi, ψi is the angle of the shock tangent at vi,
pointing away from its parent edge, ri is the radius at the shock node, and Φi is the ϕ-angles
of shock segments coincident at vi, Figure 3a-b. The boundary contour of each fragment
can be reconstructed from the parameters of the two nodes adjacent to it, Figure 3c. The 5
parameters at a degree-2 node determine the positions and orientations of its two boundary
points. Similarly, the 6 parameters at a degree-3 node uniquely determine the positions and
orientations of its 3 boundary points. This means that the parameter set Z fully specify the
positions and orientations of the starting and ending points of both boundary contours of
every shape fragment. To reconstruct the fragment’s boundary in fullness we interpolate
between the starting and ending point using the smooth bi-arc interpolation [42], leading to

Proposition 1. Given its shock graph topology G, the boundary of a shape with circular arc
boundary is fully specified from the parameter set Z as described in (1).

3 From Exemplars to Prototypes
Since the specification of a shock graph topology can generate shapes well beyond one cate-
gory, Figure 4a, and since each object category typically maps to a few shock graph topolo-
gies, Figure 4b, we use a few prototypes S = {sk = (Gk,gk), k = 1, · · · , l} to describe shapes
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Figure 3: There are 5 parameters stored at each degree-2 node (a) and 6 parameters at each
degree-3 node (b). These attributes specified the positions orientations of all boundary points
at each node. (c) Smooth interpolation between the point-tangent pairs at each fragment
using bi-arcs gives us the boundary contour of the entire shape.

in an object category, where Gk is a shock graph topology, and gk is a shape prior that cap-
tures the allowed variation (likelihood) of the geometric attributes of Gk. In this paper we
use a very simple prior: gk is a uniform distribution over the intrinsic attributes of the shape
fragments.

(a) (b) (c) (d)
Figure 4: (a) Shapes of different categories may share the same shock graph topology. (b)
Category instances can lead to a few distinct shock graph topologies, (c) A giraffe prototype
and (d) synthetically generated exemplars, which look like a giraffe.

Training a model on exemplars Given a set of (positive) training images for a specific
object category we manually delineate the boundary of exemplars and compute their shock
graphs topologies Gi [51] and extract their metric attributes Zi. We identify shock graph
topologies closely shared by many exemplars and manually construct a prototype for each
group, Figure 4b. We then generate shapes best fitted to each exemplar by manual selec-
tion of the parameter sets, resulting in a set of exemplar parameters for each prototype. The
ranges of variation of these exemplars parameters, padded by 50%, are fixed as the allowed
range for that prototype, Figure 4c. We can now generate synthetic boundary contours that
“look like” shapes of the category of interest, including those not present in the training
images, Figure 4d, which despite the rudimentary nature of the distribution and the train-
ing procedure, are visually quite satisfactory. We recognize, however, that this very simple
model can be strengthened, expecting significant improvements.

4 Single-Pass Multiple Solution Dynamic Programming
We now address the issue of finding shapes with adequate image support among those gener-
ated by our model. We select the dynamic programming approach [4, 19] because it gives a
global optimal in polynomial time while constraining the cost function in a reasonable way.
DP has been used to optimize objective functions defined on a chain [6], a tree [12], and
more complex graphs [1, 11, 19].

In our search problem, a shape can be decomposed into at most three pieces (sub-shapes)
at a shock node, each corresponding to a subtree rooted at the node. This decomposition of
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(a) (b)
Figure 5: Images with multiple instances of the same object category when spatially distant (a) and
when overlapping (b). Sliding window method faces difficulty in the latter case.

shape into sub-shapes allow DP to be applied as long as the objective function of a shape can
be written as a sum of costs of its fragments, a fairly easy requirement to meet, Section 5.
Specifically, selecting an arbitrary node, say v0, as root, each fragment Fi can be enumerated
by the index of the child node vi which has a unique parent node vî. Thus, denoting the cost
of a fragment Fi as fi(zî,zi), where zi and zî are the states of vi and vî, respectively, we have
the cost of a shape hypothesis with state Z as

f (Z) =
N

∑
i=1

fi(zî,zi). (2)

Denote the optimal cost for all possible child sub-shapes at a node vi with state zi as f ∗i (zi).
Let Ci denote the set of all immediate child nodes of zi. Then equation (2) leads to a recursive
formulation

f ∗i (zi) = ∑
v j∈Ci

min
z j

(
f j(zi,z j)+ f ∗j (z j)

)
, (3)

where z j is the state of v j. When the node vi is a leaf node and has no children, we define
f ∗i (zi) = 0 and the cost at the root node v0, f ∗0 (z0), defines the cost of the shape. The recur-
sive Formula (3) allows for an application of DP when the optimal cost of child subshapes
are computed in the order of children to parents. The optimal shape can be retrieved by
backtracking if at each node the state which achieved optimal child subshape cost is stored.
Exclusion Principles and Multiple-Solution DP: The above algorithm only returns the
globally optimal solution and thus fails to return additional instances of a category when
present in an image, Figure 5a. A common solution is the use of a sliding window where
objects are detected in multiple overlapping rectangular boxes with sufficiently dense sam-
pling of sizes and positions [8, 17, 55]. This method finds spatially non-overlapping multiple
instances, but will miss those instances overlapping within the same window, Figure 5b.

Our approach first enlarges the space of solutions to one optimal DP solution per root
node state and then uses a new criterion to select a limited subset. Specifically, observe
that distinct object instances almost always have distinct root node states: for two root node
states to be identical requires location, orientation, local scale, and local angles all to match,
extremely unlikely for two distinct object instances. The set of all possible root node states
thus create an initial solution space of candidate objects. This set is rather large, e.g., 2
million large in a typical case for our setting, and needs to be reduced in size.
Differential Exclusion Principle. An infinitesimal perturbation of the apparent contour of
an object instance in an image does not arise from the projection of another object instance.

This principle states that it is unlikely that an instance’s perturbation to exactly “eclipse”
another instance. Together with topological structure of the root node’s state space, it allows
the global solution at a node to inhibit global solutions at a neighborhood when the objective
function judges these lateral solutions to be inferiors, thus requiring
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Figure 6: (a) OCM can overcount edge labeled “a”, or may undercount by not using the best
edge, edge “c” instead of “b”; (b) Accidental alignment between a contour and the image
edges often forms a zig-zagging image contour. (c) In CCM, the best matching edge is
restricted to a window around each contour point.

Proposition 2 (Local Minimum Requirement). The shape hypothesis corresponding to the
projection of an object instance is a local minimum of the objective function in the state
space of the root node.

5 Rank-Ordering Hypotheses
We now define the objective function, which is constrained to be sum over image support for
individual fragments, but is otherwise generic. Image support for a shape fragment can be
based on the region appearance [8] or based on the pair of bounding contours [13, 46]. This
paper focuses on the latter in the form of edge-based support but the use of appearance and
small contour fragments would likely improve the results.

Previous approaches to capturing edge support for a model have used the Hausdorff
metric [21], and Oriented Chamfer Matching (OCM) [22, 46]. The OCM cost is a sum over
edges of the model contour, each of which is a linear sum of normalized distance (Chamfer
distance) and normalized orientation difference with a best matching edge.

The current form of the OCM metric has several drawbacks. First, an image edge can
contribute support to multiple contour points, Figure 6a, thus over-counting the support. Sec-
ond, the edges matched to the contour points may not be the best edge available, Figure 6a,
especially in scenes with many spurious edges, thus under-counting the image support for
the query contour. Third, this cost function rewards accidental alignment between edges and
the contour, i.e., when the image edges individually are in close proximity and align well
with the query contour but they collectively form a contour not resembling the query con-
tour, Figure 6b. These drawbacks reduces the sensitivity of the OCM, especially when the
scene contains many spurious edges or missing edges.

Our improvements to OCM: Contour Chamfer Matching(CCM) First, we force each
image edge to support at most one contour point by restricting the selection of matching
edges to a thin window orthogonal to the contour point, Figure 6c. Second, we match each
contour point to its best supporting edge rather than the closest one by searching this thin
window for the edge that minimizes the contour point’s OCM cost. In addition accidental
alignment between the model contour γ and the connected best edge correspondences, γ̄ , is
penalized, which “zig-zags” around the model curve.

Formally, let the query contour γ be represented as a set of ordered oriented points γ =
{γi}N

i=1. Let {e j}N
j=1 be the unordered set of edges (the edge map). We select a best matching
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Figure 7: (a) Histogram of CCM costs of contour fragments of the ETHZ giraffe shapes are different
because some curve segments are more detectable than others (comparing the neck region (yellow)
with the belly region (red) and because certain portions of the boundary, e.g., the head (green), are
approximated and thus receive no support.

edge γ̄i for each oriented point γi by searching among edges in a window Wi defined by the
rectangle with its short side along the edge γi extending 2ε and the long side extending τ0 in
each direction, Figure 6c. The cost for matching edges is the oriented chamfer cost,

γ̄i = arg min
e j∈Wi

[
(1−λ1)min

(
d(γi,e j)

τ1
,1

)
+λ1 min

(
|αi − ᾱ j|

τ2
,1

)]
, (4)

where αi is the tangent angle of γi and ᾱ j is the orientation of the edge e j, τ1 is the distance
normalization constant, τ2 is the angle normalization constant, and λ1 modulates the effect
of orientation to the effect of distance. Let β̄i be the tangent angle of the curve γ̄ at point γ̄i,
which is typically different from the edge orientation of γ̄i, ᾱi. Our final cost is defined as

dCCM =
1
N

N

∑
i=1

[
(1−λ1)min

(
d(γi, γ̄i)

τ1
,1

)
+λ1 min

(
|αi − ᾱi|

τ2
,1

)
+λ2 min

(
|αi − β̄i|

τ2
,1

)]
.

(5)

Tailoring the cost function to each specific fragment Observe in Figure 7a that the his-
tograms of the CCM costs on contour segments of a giraffe shape, collected from their corre-
sponding portions ranging over the giraffe images of the ETHZ dataset [15], differ substan-
tially. We hypothesize that the observed differences are due to two factors: First, some curve
segments may be more detectable than others due to context, e.g., the contour along the neck
of a giraffe is more detectable than that along its belly, Figure 7b. Second, our shape model
approximation can at time deviate from the true boundary so it receives no support, green
blob in Figure 7b. This motivates transforming the observed cost through the distribution Pγ

computed from the training data w(γ) =− logPγ(dCCM(γ)), which are then summed over the
two boundaries of each fragment to reflect the final cost.

6 Experiments
The 255-image ETHZ Shape Classes dataset [15] is used to measure the performance of
our algorithm. This is a challenging data set in which objects from 5 categories (apple
logo, bottle, giraffe, mug, and swan) vary in size and pose and often blend with cluttered
backgrounds. The most challenging is the giraffe category [57] since giraffes articulate and
the background is cluttered with texture-rich objects such as trees, leaves, and grass.
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In our implementation, edges are first computed using the Pb edge detector [9] and then
pruned using Kovesi’s edge linker [27] to reduce cluttered edges (removing edges that do not
belong to any linked contours of at least 10 pixel long). For the CCM stage, the boundary
contour is sampled uniformly with sampling rate ds = 2 pixels and parameters are set as
λ1 = 0.3, λ2 = 0.4, τ1 = 8, τ2 = π

4 , and τ0 = 3. The DP stage uses ∆x = 8, ∆y = 8, ∆φ = π/17,
∆ψ = π/8, ∆φ = π/16, ∆σ = π/16, ∆δ = π/16, ∆(log2 r) = 0.2.

Figure 8a shows the object recognition performance of our method (in red) for each of the
five categories in comparison to the Contour Selection method [57] in blue, the Automatic
Learnt Shape Model method [18] in green (for fairness we compare against their best), and
the Multi-stage Contour Based Detection method [41] in cyan. For the methods for which
a full precision-recall curve is available, we show significant improvements at least in three
categories (bottles, giraffes, and swans), same performance for the mugs, and worse perfor-
mance for the applelogos where compared to [18, 57] 1 . Our performance is comparable
to [41] at the operating point selected by them.

Figure 8b characterizes the quality of segmentation by measuring coverage (in blue)
and precision (in red) as a function of recall, following [18]: for each correctly detected
object instance, coverage is measured as the percentage of points in the ground truth contours
that are closer than a threshold t (4% the ground truth bounding box diagonal) from the
segmented shape. Precision is measured as the percentage of points of the segmented shape
that are closer than t from the ground truth contours. The algorithm clearly has a stable
performance in both coverage (∼90%) and accuracy (∼80%), and improves on [18] (data
from other references have not been available) in three categories, but not in the categories
of applelogos and mugs, probably because we did not represent the leaf of the logo and the
full handle of the mug.

7 Conclusion
We have presented a novel generative shape language that can (i) effectively model signifi-
cant category shape variation by a few prototypes and a few parameters for each prototype,
and (ii) lends itself to efficient search via dynamic programming. We have developed an
approach for finding multiple instances of a category in an image, and defined a more sen-
sitive cost function to measure image support for each hypothesis. This top-down approach
complements the bottom-up approach of [39] in that both use shape fragments as the basic
feature to describe objects. Our recognition results are state of the art on the ETHZ dataset
and the segmentation results are excellent. We plan on a better characterization of the shape
fragments in the modeling stage, incorporating appearance in the fragment cost functions and
using contour fragments instead of edges, which are expected to improve on our preliminary
choices.

1That our performance in the apple logo and mug categories was not as good as the other three categories was
probably because not enough prototype scales were used. In a pilot experiment where more scales were used for
larger images, i.e., the number of prototype scales was set proportional to the image size, with a multiplication step
size of

√
2, our object-detection performance on the applelogos category exceeded that of both [18, 57].
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Figure 8: Comparisons of (a) precision-recall and (b) average boundary accuracy for the five
categories in the ETHZ dataset. (c) Example of segmentations of the ETHZ dataset. (d)
Examples of false positive detections.
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