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While appearance-based methods have achieved great success in im-
age classification and object detection, their use can be limited because
stable key feature points are not always abundantly available and intra-
category variations of features can be as large as inter-category variations.
This paper investigates the complementary use of shape cues for object
recognition and segmentation. Two interconnected issues emerge: (i) the
repeatability/distinctiveness tradeoff on the choice of shape features and
(ii) how to model the spatial relationship among the features to fully and
efficiently capture their variations within a category, which is especially
important when the objects articulate or when the features are simple. We
propose using the skeletal/shock graph model, a distributed pictorial-
structure-type model, as the shape representation and using the “visual
fragments,” pairs of contour fragments corresponding to a skeleton seg-
ment, as the basic features for recognition. These two proposals are in-
tegrated in an object recognition/segmentation system which consists of
three components: (/) a generative shape model which can accurately de-
scribe a wide range of free-form shapes, (2) an efficient search method,
and (3) an objective function to rank-order the hypotheses.
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iew of our approach: From (a) exemplar shapes, we construct
(b) prototypical shock graph topologies and a range of metric variations associated
with them. Given (c) a new image, we generate shapes from the constructed proto-
type and search for those with adequate image support. (d) The result of this search
allows us to detect and delineate category instances in the image.

1. Fragment-Based Generative Shape Model Our generative model for
shape is an extension of Trinh and Kimia’s model ICCV’07), which syn-
thesize shapes sharing a given shock graph topology from a fairly low
number of parameters. Like their model, ours describe a shape as a com-
position of fragments, our basic features for recognition, Figure 1a. How-
ever, through an extrinsic formation the fragments in our model are inde-
pendent from one another since each fragment is fully described from the
local first-order geometric properties at adjacent nodes.

Since the specification of a shock graph topology can still generate
shapes well beyond one category and since each object category typically
maps to a few shock graph topologies, we also model a shape prior captur-
ing the allowed variation of the geometric attributes of the shock graphs.
We developed a simple procedure to learn these prototypes from the train-
ing exemplars.

2. Single-Pass Multiple Solution Dynamic Programming Given a query
image and an objective function which is a sum over image support of
the fragments, the Dynamic Programming (DP) approach allows us to
search among those generated by our model in polynomial time. How-
ever, the traditional DP fails to return additional instances of a category
when present in the image because it only gives the globally optimal so-
lution. We devise the Differential Exclusion Principle to find multiple
solutions without having to run DP multiple times: the solution space is
initially enlarged to one optimal DP solution per root node state, and then
narrowed down by discarding solutions that are spatially not local min-
imum of the objective function. Lastly, we apply thresholding to obtain
the final solution set.

3. Rank-Ordering Hypotheses Using Contour Chamfer Matching
(CCM) The popular Oriented Chamfer Matching (OCM) cost (Shotton
et al., PAMI’08) may over-count or under-count image support by match-
ing an edge to multiple contour points or by not matching the best edges
to the contour points, Figure 2a. It may also reward accidental alignment
between edges and the contour, Figure 2b. To avoid these pitfalls, we re-

strict the selection of matching edges to a thin window orthogonal to the
contour point, Figure 2c, and match each contour point to the edge that
minimizes the OCM cost. We also penalize the orientation difference be-
tween the model contour and the connected best edge correspondences,
which “zig-zags” around the model curve if the alignment is accidental.
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Figure 2: (a) OCM can overcount edge labeled “a”, or may undercount by
not using the best edge, edge “c” instead of “b”; (b) Accidental alignment
between a contour and the image edges often forms a zig-zagging image
contour. (c) In CCM, the best matching edge is restricted to a window

around each contour point.

Experiments The 255-image ETHZ Shape Classes dataset (Ferrari et al.,
ECCV’06) is used to measure the performance of our algorithm. This is
a challenging data set in which objects from 5 categories vary in size and
pose and often blend with cluttered backgrounds. For the object detec-
tion task, we show significant improvements at least in three categories
(bottles, giraffes, and swans), same performance for the mugs, and worse
performance for the applelogos when compared to results of Zhu et al.
(ECCV’08) and Ferrari et al. (INRIA Tech Report’08). The worse perfor-
mance in apple logo was probably because not enough prototype scales
were used. In a pilot experiment where we used more prototype scales
for larger images, our performance on the applelogos category exceeded
that of both Zhu et al. and Ferrari et al. As for the object segmentation
task, our algorithm has a stable performance in both coverage (~90%)
and accuracy (~80%), and improves on Ferrari et al. in three categories,
but not in the categories of applelogos and mugs.
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Figure 3: (a) Segmentation examples of the ETHZ dataset. (b-c) Com-
parisons of precision-recall and average boundary accuracy for the giraffe
category in the ETHZ dataset.



