
BUCH, ORWELL, VELASTIN: 3DHOG FOR CLASSIFICATION OF ROAD USERS 1 
 

 

Abstract 

This paper proposes and demonstrates a novel method for the detection and 

classification of individual vehicles and pedestrians in urban scenes. In this scenario, 

shadows, lights and various occlusions compromise the accuracy of foreground 

segmentation and hence there are challenges with conventional silhouette-based 

methods. 2D features derived from histograms of oriented gradients (HOG) have 

been shown to be effective for detecting pedestrians and other objects. However, the 

appearance of vehicles varies substantially with the viewing angle and local features 

may be often occluded. In this paper, a novel method is proposed that overcomes 

limitations in the use of 2D HOG. Full 3D models are used for the object categories 

to be detected and the feature patches are defined over these models. A calibrated 

camera allows an affine transform of the observation into a normalised representation 

from which ‘3DHOG’ features are defined. A variable set of interest points is used in 

the detection and classification processes, depending on which points in the 3D 

model are visible. Experiments on real CCTV data of urban scenes demonstrate the 

proposed method. The 3DHOG feature is compared with features based on FFT and 

simple histograms. A baseline method using overlap between wire-frame models and 

motion silhouettes is also included. The results demonstrate that the proposed method 

achieves comparable performance. In particular, an advantage of the proposed 

method is that it is more robust than motion silhouettes which are often compromised 

in real data by variable lighting, camera quality and occlusions from other objects. 

1. Introduction 

In recent years, there has been an increased scope for automatic analysis of urban traffic 

activity. This is due in part to the additional numbers of cameras and other sensors, the 

enhanced infrastructure and consequent accessibility and also advances in analytical 

techniques to detect traffic violations (illegal turns, one way streets, etc) and to identify 

road users. Using general purpose surveillance cameras, the classification of vehicles is a 

demanding challenge (see Figure 1). Compared to most examples in the image retrieval 

field, the quality of surveillance data is generally poor and the range of operational 

conditions (night-time, inclement and changeable weather that affects the auto-iris) require 

robust techniques which need to be immune to errors in obtaining road users’ silhouettes. 

In consultation with a government transport department, we use five generic categories for 

our classifier: Bus/Lorry; Van; Car/Taxi; Motorbike/Bicycle and Pedestrian. 
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Figure 1 Example views from the i-LIDS dataset with detected and classified pedestrians 

and vehicles. The image on the right illustrates the 3D models used. 

Our contribution is three-fold. Firstly, 3D spatial models are introduced to define the 

location of interest points from which local features are extracted. The local features are 

constructed out of histograms of oriented gradients (HOG). The combination of 3D interest 

points and HOG is hence introduced as the novel 3DHOG feature. Performance is 

evaluated, comparing 3DHOG with FFT and histogram-based local features. The second 

contribution is a training and classification framework based on the 3DHOG feature which 

allows classification using a variable number of interest points (previous approaches 

required a fixed number of interest points). This approach works independently of motion 

silhouettes and can be applied to stationary objects, still images or moving cameras and is 

therefore in principle less likely to be affected by motion segmentation issues. Our third 

contribution is an extensive evaluation of the proposed method on real video 

benchmarking data (i-LIDS from UK Home Office) publicly available from [2]. 

The remainder of the paper is organised as follows: The next section discusses related 

work. Section 3 introduces the feature extraction process that is used in section 4 for 

training. The classification framework is introduced in section 5 with performance 

evaluation in section 6. The paper concludes with section 7. 

2. Related work 

The process of classifying images or objects in images can be generally categorised either 

as top-down (usually visual surveillance) or bottom-up (usually object recognition) 

approaches. For top down, the whole context is analysed simultaneously or used to verify a 

hypothesis during searching. Motion silhouettes are generated from background modelling 

and classification is performed based on motion silhouette measurement features 

[20,24,18]. This approach is vulnerable to inaccurate foreground segmentation, which is 

inherent to urban environments due to low camera angles, occlusions, etc. Effort has been 

directed to accurate foreground segmentation by various shadow removal techniques or the 

instantaneous background, as in [8]. The above 2D approaches can be extended to 3D for 

vehicle detection and classification as in [24,18] and Buch et al. [3,4]. The motion 

silhouette outline is used for classification in [18,3] and for vehicle detection of a single 

size in [22]. Wire frames are matched to images in [26]. 

In contrast to the above, bottom up approaches are usually targeted at object 

categorisation and classification of still images. An extensive range of local features have 

been proposed: SIFT [16], SURF [1], GLOH [19], boundary fragment model BFM [21], 

HOG [6,7] with an overview in [19]. Together with those features, the use of spatial 

constraint is desirable to improve performance. A simple ‘bag of words’ approach is often 

not  sufficient as it  does  not  localise  objects.  In [10], a  fixed  spatial  model  for  feature  
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Figure 2 Block diagram of the framework for training and classification 

grouping in highway scenes is used. A constellation model is used in [17] for vehicle 

classification. Most spatial constraints can be expressed with the k-fans introduced in the 

seminal paper of Crandall et al. [5]. The ‘implicit shape model’ is used in Leibe et al. [14] 

for pedestrian detection. Extensions of this early work in [12, 13] show the object 

recognition community moving towards surveillance applications [15, 23]. However, the 

obtained performance figures are not yet good enough for practical real world applications. 

Top-down and bottom-up approaches are combined by Dalal and Triggs [6], using 

local features with 2D fixed spatial constraints. This is used for pedestrian detection, 

vehicle classification into 2 classes [17] and action recognition (temporal extension) [11]. 

2.1. 3DHOG detector and classifier 

Our approach takes the good results from 3D models into account [24,18,3] and defines the 

local features and the spatial relationship between them in 3D world space. The top down 

solution from histogram of oriented gradients (HOG) using a 2D search window [6] is 

generalised to 3D by ‘wrapping’ the camera image around the models like in [25]. Using 

calibrated cameras, obtained in a relatively straightforward way given a plan map of the 

scene, the scale is determined directly, in contrast to the multiple scale search in [6]. By 

introducing a framework that deals with variable numbers of visible interest points, we can 

use a single model to detect objects from any angle (Figure 2). Our algorithm detects rigid 

vehicles and pedestrians in the same way and does not require special cases. The algorithm 

uses texture to generate local features only and does not rely on potentially noisy motion 

information. This implies that the method is applicable in cases where reliable motion 

information is not available, e.g. stationary objects, single frames and moving cameras.  

3. Local features in 3D 

First we define the position of a set of interest points located on the faces of 3D models 

(Figure 1 similar to [3]) of the objects to be classified. Then for a candidate object (either 

during training or when classifying) we obtain image patches for interest points that are 

sufficiently visible. Finally, we calculate feature vectors from those patches. The method, 

described next, is applied to all models and to keep the expressions succinct there is no 

model index subscript. An interest point , , , , ,x y zx y z e e e =  p  is determined by its 3D 

location [ ], ,x y z  and orientation , ,x y ze e e =  e . A set of interest points { }j=P p  on a 

face is defined on a regular grid with face density 
f

d  around an origin 
0

p  (centre of the 

face) and with direction normal to the face 
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Figure 3 Extraction pipeline: 3D model with interest points P  followed by input image I , 

extracted image patches 
p

I and feature vectors ˆ
k

f . The radius of cones indicates the weight 

j
q  of interest points 

j
p . If a cone is missing from the grid, it was either not visible during 

training or gave poor performance and was rejected accordingly.  

 ( )0grid ,j fd=p p . (1) 

To ensure good coverage for small faces of e.g. pedestrians, while also limiting the total 

number of interest points for large faces of e.g. buses, the face density 
f

d  is adjusted 

according to face size 
f

s  (maximum extent) relative to a reference size
0

s  and a growth 

parameter γ : 

 

( )

0

0

1
f

f

d
d

s

s
γ γ

=

− +

 (2) 

For our experiments 
0

4ms = , 0.35γ =  and 
0

4d = were used, which trades off 

oversampling against the use of too large patches, which would lead to global rather than 

local features and hence to loss of discriminating power. 

3.1. Extracting image patches 

The extraction process automatically resolves the scale and perspective distortion of the 

observation and presents a constant size image to a classifier. The locations of interest 

points are used to extract visible image patches 
pk

I  from an image I  at a given object 

model location [ ], , ,x y z r=x  with orientation r . Let 
j

v  be the viewing direction of 

interest point 
j

p . The visible set of interest points { }v k
= ⊆P p P  is determined by the 

visibility threshold 0.65
v

τ =  to ensure minimum visibility: 

 { },
v j j j v

τ= >P p e v . (3) 

A square image patch 
pk

I  is defined for interest points 
k

p  with pixel size 
p

l δ ρ= ⋅  using 

constant 3D world resolution ρ  in pixels per metre and width δ  in metres allowing some 

overlap of patches. An affine transformation with bilinear interpolation is used to map 

pixels of the input image I  to images 
pk

I  producing the set of visible image patches 
p

I . 

The cardinality of the set 
p

I  is variable depending on the viewing direction of the model. 

The process can be viewed as one of wrapping the camera image around the model 

resulting in invariant representations for any 3D location and viewpoint. See Figure 3 for 

an example of the processing pipeline. Histogram stretching is applied to individual images 

pk
I  to achieve additional illumination independence. 
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3.2. Generating patch features 

The image patches 
p

I  extracted as explained in the previous section are used to generate 

normalised feature vectors ˆ
k

f . The length of those vectors depends on the algorithm used, 

but the training and classification framework is independent of that length. Vectors 
k

f  

provided by any one of the available algorithms (HOG, FFT or Histogram) are normalised 

for better performance, according to [6]: 

 

2

ˆ k

k

k

=
f

f
f

 (4) 

3D Histogram of Oriented Gradients (3DHOG) 

The generation of the feature vectors 
k

f  for image patches 
p

I  is performed in the same 

way that Dalal and Triggs [6] generate the vectors for single cells. First, a Sobel kernel 

[ ]1,0,1−  is used to compute the gradient image for all three colour channels independently. 

The angles are calculated in the range [ ]0,2π  as this is recommended for rigid objects like 

vehicles. A single histogram is generated for every image patch with η  bins. The highest 

gradient magnitude of the three channels is used for the histogram. We use the visible part 

of 3D models to extract patches, which can be seen as ‘3D windows’ generalising the 

concept of planar 2D windows in the seminal paper [6]. This adds complexity for 

combining the variable number of feature vectors 
k

f , which is efficiently dealt with by a 

new framework in section 5. 

FFT feature 

Fast Fourier transform (FFT) features 
k

f  are calculated from the spectrum of image 

patches 
p

I . The DC component is removed to eliminate the influence of illumination. The 

remaining magnitude spectrum is used to fill a two dimensional histogram with number of 

angle bins η  and number of frequency bins ν . This is similar to using banks of Gabor 

filters and accumulating the response into a feature vector. 

Histogram feature 

The grey level histogram is one of the simplest image features that can be used in the 

classification framework proposed here and thus it is used to compare with the 

performance of the 3DHOG features. The number of bins is defined by η . 

4. Training 

The classification framework uses training for every available 3D model. The spatial 

extent of interest points P  is predefined to generate a data driven model for individual 

interest points, as outlined below. An overview of the training process is given in Figure 2. 

4.1. Data driven model for interest points 

Interest point appearances are modelled with single Gaussian distributions. For the 

estimation of the mean 
j
µ  and covariance matrix 

j
Σ  of every interest point 

j
p , a training 

set is used. The training set comprises frame images with a set of model locations 

{ }N
=L x . Those positions 

N
x  were generated with the baseline algorithm in [3] and 

manually refined. The approach described in section 3 is used to extract feature vector 
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samples for interest points in a training frame. Typically 5N =  to 30 sample vectors per 

interest point 
j

p  are accumulated into sample set { }ˆ
j Nj

=S f  from the training videos. The 

covariance matrices 
j

Σ  are estimated from sample sets 
j

S  as diagonal matrices due to the 

typical cardinality. The Mahalanobis distance measure 
k

d  is used to compare newly seen 

visible feature vectors ˆ
k

f  with the model. 

4.2. Weights for refinement 

After estimating the Gaussian models for every interest point, the detection and 

localisation performance of every individual point can be improved considerably. We have 

to deal with individual interest points, because SVM classification as in [6] is not possible 

due to the variable number of interest points in our case. As responses of different points 

can vary, the average response for different models can be inconsistent. The three 

refinement steps outlined below overcome those limitations by normalising these 

responses and automatically determining higher weights for good interest points. 

Distance surface 

In the first step, a distance surface is calculated for models placed onto the training 

positions 
N

x . A regular grid of positions 
MN

g  is generated for every position 
N

x  in 

training set L . The size of the grid is set to 4m  with 9 steps. This corresponds to a shift 

between grid points of approximately half an image patch and a total displacement of twice 

the patch size in every direction. Based on those dimensions, the validation procedure can 

assess the location sensitivity of interest point data models. The distance between the 

interest point’s models ,
j j

µ Σ  and the extracted feature vectors ˆ
j

f  at model positions 
MN

g  

gives a distance surface 
MNj

D  for every interest point 
j

p  at every training position 
N

x . A 

mean distance surface 
Mj

D  over all training samples N  is defined by 

 
MNj

N

Mj
N

=
∑D

D . (5) 

Transfer function 

A logistic sigmoid function is estimated to transform a given Mahalanobis distance 

measure 
k

d  of visible feature vector ˆ
k

f  into a match measure 
k

m  in the interval [ ]0,1 . 

The function uses parameters a  and b  

 
( )

1

1 k
k a b d

m
e

−
=

+
, (6) 

which are derived from the shape of the distance surface. The middle of the sigmoid 

function is aligned with the centre score of the distance surface resulting in 
2

M j
b = D . A 

line is defined between this centre score and the mean of all scores which has gradient g . 

Using the first derivative of 
k

m , parameter 4a g=  which makes the gradients equal 

(proof is in the supplementary material). This provides normalised responses of points. The 

nature of equation (6) limits the influence of large distances (outliers). Any visible subset 

of interest points will provide the same match measure for models after this normalisation. 

The match measure response at training positions is given as 

 
( )

1

1 Mj
Mj a b

e
−

=
+

D
M . (7) 
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Figure 4 Left: Example of car detection with occlusion of pedestrians showing match 

measure surface with a good peak. Right: Parameters used during evaluation. 

Interest point weight 

Relative weights are given to interest points in order to favour those with good localisation 

performance and reject those with bad performance. For classification, the weight is used 

to calculate a total weighted average match measure m  over visible interest points 
k

p . A 

histogram ( )hist
hj Mj

M
H = M  of the match surface 

Mj
M  is calculated where every bin h  

corresponds to a ring of the surface. Low variance of the match measure 
hj

H  inside such a 

ring is a good indicator for consistent and symmetric localisation performance. The interest 

point weight 
j

q  is calculated from a weighted average of those variances using the 

element count 
hj

C  of histogram bins: 

 
var( )

1
hj

j

h hj

H
q

C
= −∑ . (8) 

To complete the training, the best 80% of interest points are used for the classifier with 
j

q  

used as weight. Refer to Figure 3 for a car example with marked up interest points as 

cones. During classification, variable numbers of visible interest points { }v k
=P p  

contribute to the total match measure 

 
k k

k

k

k

m q

m
q

=
∑

∑
. (9) 

5. 3D classification framework 

The classification framework used here is based on the framework described by Buch et al. 

[3]. Background estimation with a Gaussian mixture model [9] and shadow removal is 

used to generate motion silhouettes. For each silhouette, a grid of 3D object hypotheses is 

generated from the centroid and scored by the classifier using equation (9). Please refer to 

Figure 2 for a block diagram. The silhouettes are often noisy due to the challenging video 

data in urban environments with changing lighting conditions and low camera angle, but 

are a good indicator for the existence of a vehicle. A particular problem is the auto iris 

function of cameras, which adjusts when large white vehicles pass the camera producing 

large foreground areas during this period of time (Example in results of Figure 6). 

The classifier sweeps through models and locations by scoring hypotheses based on 

only appearance and texture to find the highest match measure above the detection 

threshold 
M

τ . In  the  process,  the  3DHOG  framework is  used  to  extract  visible  image 

symbol value unit 
γ  0.35  

0
d  4  

v
τ

 
0.65  

ρ
 32 P/m 

δ  1 m 
η

 10  
ν  4  

Mτ  0.38  
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Figure 5 True positive examples for vehicles and pedestrians using 3DHOG. 

patches and features for every hypothesis as described in section 3. To handle variable 

visibility and occlusion, an average match measure per hypothesis is calculated according 

to equation (9) producing a match surface shown in Figure 4 left. To limit the search space, 

orientations of vehicles are assumed to align with the road direction, which is realistic for 

many road videos. The classification is performed on a per frame basis without tracking or 

temporal refinement. 

6. Evaluation 

Evaluation was performed on realistic (operational quality) videos for traffic surveillance. 

All three algorithms are compared with state of the art classifiers. Figure 4 right provides a 

parameter list for the tests. We use scenario 1 of the Parked Car data set, which is part of 

the i-LIDS data sets [2] licensed by the UK Home Office for image research institutions 

and manufacturers. Each dataset comprises 24 hours of video sequences under a range of 

realistic conditions. They are used by the UK government to benchmark video analysis 

products and therefore are ideal for evaluating and comparing algorithms in the computer 

vision community and there is a gradual increase in take-up. Approximately one hour of 

video for sunny, overcast and changing conditions was selected. The auto iris function of 

the camera causes image changes for large vehicles. In addition, the overcast videos 

contain saturated areas in the middle and far end of the view. The car is the most common 

vehicle type in the dataset. Some illustrative examples are shown in Figure 1 and Figures 5 

to 6. 

The evaluation is based on an extended confusion matrix including FP (false positives) 

and FN (false negatives) for detector and classifier (Table 1). Precision P  and recall R  

can be calculated from the confusion matrix [2, 3]. The last row of the matrix is the 

normalised bounding box overlap between ground truth and detection. A high overlap 

indicates good localisation performance. The bounding box for our detection is calculated 

from the wire frame outline of the best fitting model. 

Out of the three features in section 3, the best performing algorithm is 3DHOG (Table 

1) with a total recall of 81.1% at precision of 82% and classification accuracy of 92.1%. 

This compares well to recall of 88.2% at precision 89% for the motion silhouette baseline 

from [3] run on the same data set, but 3DHOG should be better dealing with noise and 

particularly occlusion. The bounding box overlap of both algorithms is identical 0.68. The 

system using FFT features showed lower performance (Recall 64.9% at precision 56.5%) 

but  is  still  able  to   perform  unbiased   classification.  The  detection  and   classification  
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                  a                                  b                                  c                                  d    

Figure 6 Four examples generated with 3DHOG. a) Missed car due to low contrast of the 

vehicle bonnet and roof. b) Misclassified SUV as van due to similar size and appearance. 

c,d) Correct detections, the blue outline indicates the foreground mask. Due to the auto- 

iris function of the camera, the mask is too large for the large white vehicles. The 3DHOG 

classifier can correctly locate and classify the vehicles because it does not rely on the 

foreground mask. 
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Table 1 a) Confusion matrix for 3DHOG detector and classifier. b) FFT system 

performance c) Baseline algorithm (motion silhouette) from [3] evaluated on the same 

video data. 

performance for histogram features is still reasonable (Recall 62.5% at precision 63.9%) 

considering the crude nature of the feature. This demonstrates the effectiveness of the 

patch extraction framework based on 3D interest points to deal with basic features. By 

using the more descriptive 3DHOG feature, improvement to this baseline approach is 

observed of recall 18.6% and precision 18.1%. For sensitivity analysis of the patch size, it 

is varied to 0.8mδ =  at resolution 20P mρ =  and 0.5mδ = at 16P mρ = , which 

causes the classification performance to drop by 5% and 15% respectively
1
. 

7. Conclusions 

A novel algorithm, 3DHOG, for detection and classification of road users in urban scenes 

was presented. This is an extension to HOG feature extraction by applying 3D spatial 

modelling to operate on still images and thus overcoming the reliability limitations of 

motion silhouettes. This single solution handles variable viewpoints for rigid vehicles as 

well as pedestrians. A training framework is proposed generating weights for learned 

interest points for classification. Three algorithms for features based on HOG, FFT and 

simple histograms are evaluated and show comparable performance to a baseline approach 

using motion silhouettes. The classifier sweeps the hypotheses space to find the best match 

                                                           
1 Confusion matrixes for all evaluated cases are provided in the supplementary material 
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between images (observation) and 3D models based on the average match measure 

between interest points and the training data. 

For future work, we have started working on the integration of the classifier with frame 

to frame tracking will provide the opportunity to demonstrate the full potential of the 

algorithm on partially occluded objects. Tracking predictions can be used as additional 

cues for classification (especially for example for turns) and conversely, classification can 

assist tracking. 
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