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Abstract

An efficient registration algorithm working on non-rigid 3Dobjects is
presented. We formulate the registration as a discrete labeling problem on
MRFs model whose energy can be minimized by optimization techniques in
the literature. Due to the huge search range in three-dimensional space, pre-
vious approaches produces a vast amount of labels for a node in the MRFs
graph. To reduce the number of labels, we decompose a node into three nodes
so that the labels in each node represent just one-dimensional displacement.
This procedure introduces a factor node with a clique potential of size three,
defining ternary interaction between the decomposed nodes.We convert the
factor node into pairwise interactions and adopt the tree-reweighted message
passing technique, which guarantees the convergence of lower bound of the
energy function. In experiments we use clinical and synthetically deformed
3D medical images. Result shows the proposed method enhances computa-
tional efficiency without loss of accuracy.

1 Introduction

Non-rigid 3D registration is the process to match the identical volumes that are mis-
matched in a non-linear or non-uniform manner in two or more views. As the other
low-level vision problems such as stereo matching and optical flows, it deals with the
most fundamental part of computer vision,i.e., view correspondences. Thus, a plausible
method for 3D registration will be of great importance inspiring various fields in the lit-
erature, also giving lots of useful applications: the most practical and popular one may be
found in medical imaging field.

Conventional approaches utilize a mesh structure superimposed on input volumes.
Deformation of the mesh is estimated first, then calculatingthe rest of voxel transforma-
tions is followed. Feature-based methods [7, 6] relies on landmarks extracted from input
image pairs. The mesh deformation is controlled by matchingthe corresponding points
and completed by surface interpolation. An answer is given in relatively short time, but
may not accurate enough for some applications. In contrast Rueckertet al. [8] proposed
an image-based approach which searches for pixel-wise similarities and gradually trans-
forms the floating image to align with a fixed image. An energy function is formulated
using image matching cost and mesh regularizing cost, and optimized through a classical

BMVC 2008 doi:10.5244/C.22.59



techniquei.e., a gradient descendent algorithm assuming local convexity. Although the
algorithm gives a state-of-the-art accuracy, the computation time is tremendous. Further-
more, a simple variation of the cost definition would requirethat amount of time again,
since the optimization depends on the gradient of the energyfunction.

Recently researchers proposed new approaches reformulating the registration as a dis-
crete labeling problem on MRFs model, making the optimization technique independent
from the cost definitions. Glockeret al. [1] utilized this strategy and covered inter and
intra modality in medical imaging field. They limited searchrange of similarity match-
ing cost by assuming relatively small local deformation andby indicating specific search
directions,e.g. eight directions for 2D problems. In this way, they were ableto greatly
reduce the number of labels in each graph node, however the accuracy might degenerate if
applied to the problems with severe deformations. Tanget al. [11] applied the graph cuts
to the 2D and 3D registration of medical images and compared their algorithm with the
previous innovative works such as FFD [8] and DEMON [5]. Eventhough they showed
fine experimental results, however, taking every pixels as individual nodes may cause
huge computational complexity, especially in the 3D problem.

Generally, a method to address intensive deformation woulddemand huge number
of labels to cover a possible target object in a high dimensional search range. Thus it
would suffer from big computational burden, because the state-of-the-art optimization al-
gorithms increase complexity directly proportional to thenumber of labels. In the case of
2D registration, the method proposed in [9] could be a good solution. It decomposes a
node of a 2D displacement vector into two nodes of 1D vectors to decrease the number of
labels. A pairwise potential energy is defined on the interaction between the decomposed
nodes. The total energy term can be easily minimized using a presented optimization
technique. However, if in a 3D problem, the process would induce higher-order inter-
action between the decomposed nodes, and directly applyingthe existing optimization
algorithm is not straightforward. In this paper we propose anovel approach to decom-
pose a node in the 3D registration problem by introducing a factor node with higher-order
clique potential. We also provide a way to convert the factorgraph into a model with sim-
pler interactions and an efficient implementation to optimize it through message-passing
based methods. As a result, the proposed algorithm extremely reduce the computational
complexity of the 3D registration.

2 Registration as A Discrete Labeling Problem

We introduce the basic framework and review the MRFs formulation for it. Throughout
this paper, we refer a fixed volume asreference and a floating volume asinput. Our goal
is to find the optimal transformation vector fieldT (x), wherex indicates the input vol-
ume domain. Assuming local deformation, we superimpose a deformable mesh on the
input volume. The overall strategy can be stated as follows:Find thediscrete displace-
ment vectors for control points, then the pixel-wise deformation field could be calculated
accordingly using the FFD model based on cubic B-splines [8].

For the corresponding MRFs model, we start with some definitions. LetG be an
undirected graph, denoting the deformable mesh, with node set V and edge setE . A
nodes ∈ V corresponds to a control point in the mesh. Letls be a random variable in
some discrete sample spaceLs = {1, . . . ,L}, representing the label of the nodes. With
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Figure 1: Conventional model. A node represents a control point in the mesh, having a
label of 3D displacement vector. Unary potentials are described in black squares while
binary potentials in white squares.

all the random variables in each node, we obtain a vectorl ∈ L of sizen = |V |, where
L = L1 ×L2 × . . .×Ln. The goal is restated as finding the best configurationl that
minimizes an energy formulation defined by potential functions as follows,

E(l|θ ) = ∑
s∈V

θs(ls)+ ∑
(s,t)∈E

θst(ls, lt) . (1)

The unary potential functionθs(ls) indicates a data cost defined by similarity measures
between input and reference volumes. The binary potentialθst(ls, lt) denotes a smooth-
ness cost computed using the label difference between adjacent nodess andt. Figure 1
presents this model describing a mesh control points as a node, a unary potentials as a
black square, and a binary potential as a white square. The square nodes can be seen as
a factor node [3] as well, since factor nodes can represent various type of potential func-
tions,e.g., unary, binary or ternary potentials. We will denote the factor node set asF to
alternatively indicate edges with higher order cliques.

3 Node Decomposition

For the conventional model, we can introduce a functiond : Ls →R
3, mapping each label

ls to a 3D displacement vectord(ls). Without loss of generality, we assume each dimen-
sion of displacements has the same discrete set of valuesD = {−D,−D+1, . . . ,0, . . . ,D−
1,D} whereD ∈ N controls the displacement width. Then, the model produces labels
which is cubic to the displacement width, that is,|L | = |D |3 = (2D+1)3.

The problem is, this label size actually cause heavy computational complexity for
discrete optimization algorithms. For example, the approximate computation times for the
state-of-the-art methods such as graph cuts and TRW-S areO(|V ||L |) andO(|V ||L |2)
respectively, becomingO(|V ||D |3) and O(|V ||D |6), where the displacement widthD
usually is not trivial.

We address this challenge by adapting thedecomposed model [9]. A nodes ∈ V is
decomposed into three nodessx, sy andsz, constituting new node setsV x, V y andV z,
respectively. These node sets construct individual graph structures introducing new edge
sets,i.e., G x = (V x

,E x), G y = (V y
,E y) andG z = (V z

,E z). Note that the graph structures
are identical to the original graphG = (V ,E ). As like the original edge setE , the edge



x

y

z

Figure 2: Decomposed model. A factor node is introduced to define the interactions
between thethree decomposed nodes. Note that this factor node is described ina black
square, implying it originated from the unary potential in Figure 1.

setsE x
,E y

,E z define the smoothness cost between neighboring nodes in the individual
graphs. We call these pairwise interactions asintra-volume edges.

We also define the interaction between thethree decomposed nodes. A factor node
f ∈ F is introduced to connect the decomposed nodes as shown in Figure 2. This factor
node is defined in a ternary potential function coming from the unary potential of the
original graph,e.g., θstu(lsx , lsy , lsz) = θs(ls) where the original labells indicates a 3D
vector displacement of(lsx , lsy , lsz). We call this factor node set asinter-volume edges.
Unary terms for the decomposed nodes are defined as 0,i.e., θsi(lsi) = 0 wheresi ∈ V x ∪
V y ∪V z.

The proposed model allows a label in each node to represent just one-dimensional
displacement in the Cartesian coordinate. We can modify themapping function asd :
Ls → R wheres ∈ V x ∪V y ∪V z. Energy formulation in (1) is accordingly modified as
follows,

E(l|θ ) = ∑
(s,t)∈E x∪E y∪E z

θst(ls, lt) + ∑
(s,t,u)∈F

θstu(ls, lt , lu) . (2)

Consequently, the problem can be reformulated as minimizing the energy function defined
with binary and ternary clique potentials.

While we are able to assign just one-dimensional label on each node, the number of
nodes increases threefold. Note, however, that this condition is much more favorable since
the complexity becomesO(|V ||D |) andO(|V ||D |3) for the graph cuts and the TRW-S.

The MRFs energies computed by same configurations of the product model and the
decomposed model are exactly same. However, Werner [14] proves that the solution space
of the decomposed model properly contains that of the product model; that is, lower bound
of the decomposed model is less tight when solved by LP-relaxation. This can be another
trade-off for the simplicity besides the doubled number of nodes, though not serious.

4 Optimization using Tree-Reweighted Message Passing

For optimization, we are not allowed to choose graph cuts-based methods, because the
clique potentials defined on inter-volume factor nodes are not included in any type of
metric function. Instead we adopt message passing based methods which does not de-
pend on the type of spatial prior. Recently the tree-reweighted message passing (TRW)
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Figure 3: Conversion from a factor graphs to pairwise interactions: (a) A cycle-free factor
graph, (b) A graph with pairwise interactions denoted by white squares. The factor node
is replaced by an auxiliary nodea. (c) A converted graph from (a) to calculate message to
the root nodeu, (d) A converted graph from (b) to calculate message to the root nodeu.

algorithms [12, 2] are presented in the literature showing excellent performance [10]. The
TRW methods decompose a graph into trees where an exact MAP can be calculated by
min-sum belief propagation on each tree. This scheme let themethods provide a lower
bound for the energy. In particular, thesequential TRW (TRW-S) [2] adjusts the message
updating schedule and yields a lower bound guaranteed not todecrease. Thus this algo-
rithm is preferable compared to the loopy belief propagation(LBP) of which scheduling
is heuristic and convergence is unknown.

4.1 Conversion from a Factor Node to Pairwise Interactions

Since the TRW-S assumes pairwise interactions on edges, we need to reorganize our graph
model which involves the higher-order factor nodes. Here, we introduce only conceptual
idea of the conversion. Readers are referred to [13, 12] for detailed proof.

In a cycle-free factor graph, passing a message to the root node includes following
steps [3]: Replace each variable node with a sum operator. Replace each factor node
with a “sum and add by the factor nodef ” operator, and between a factor nodef and its
parentu, insert a min∼{u} operator, where∼ {u} denotes the node set in the graph except
the nodeu. Figure 3(a) and (c) demonstrate this process of conversionfrom (a) to (c).
Now consider a factor graph in Figure 3(b). If we appropriately define the nodea and
the pairwise factor node (depicted in blank square) betweennodes, an equivalent graph
(d) would be obtained throughout the process. Having the similar structure, (c) can be
easily converted to (d). Consequently, by introducing an auxiliary nodea, we can convert
a factor graph into a graph with pairwise interactions.

To this end, the pairwise factor node and the auxiliary nodea in (b) should be carefully
designed. We associate a new labelz ∈ Z whereZ = Ls ×Ls ×Lu, with a unary and
a binary potentials as follows

ψa(z) = θstu(ls, lt , lu), (3)



ψai(z, li) =

{

0 if zi = li
∞ otherwise

∀i ∈ {s,t,u} . (4)

Note that the functions force the auxiliary nodea to follow the configurations in nodes
s, t andu. After the conversion, energy model (2) changes to following

E(l|θ ) = ∑
(s,t)∈E x∪E y∪E z

θst(ls, lt) + ∑
a∈VF

ψa(z)+ ∑
(a,i)∈EF

ψai(z, li) . (5)

4.2 Efficient Implementation

Although we successfully changed the factor nodes into pairwise interactions, we cannot
avoid to include the auxiliary nodes which have vast amount of label space. Due to the
min∼{u} operator in message passing, the auxiliary node can induceO(|D |6) of time
complexity as well asO(|D |4) of memory space to store the message. However, the
storage forψai actually is not needed since it never adds a value on a message. We can
ignore all summations ifzi 6= xi. Furthermore, as the auxiliary node should follow the
configurations of nodess andt when they are fixed, the search space of min{a} operator
is reduced toO(|D |) which is same as the ordinary nodes. Thus, the complexity becomes
O(|D |2) as like general pairwise TRW-S, by just modifying logics in the implementation.

5 Experiments

Medical images include good examples of deformable objectsin 3D volumes. We conduct
experiments on volume data of liver CT images. The test CT volumes are scanned from
five patients, indexed byi, at arterial(Ai) and portal phases(Pi), which means before and
after contrast medium injection. The volumes have the size of 256×256× Sz whereSz

ranges from 70 to 170. The mesh spacing is equally set to 16 pixels forx, y, z coordinates.
All experiments are performed on an Intel Pentium 4, 3.6 GHz machine with 3.12 GB
RAM.

Data Cost. Since the optimization process is independent from the definition of data
cost, we can use various types of data cost,e.g., the SSD(Sum of Squared Difference),
the NCC(Normalized Cross Correlation) or the NMI(Normalized Mutual Information).
For simplicity, we chose the SSD with matching cubes of 16×16×16 where the search
space covers 15×15×15. Note that the number of labels for a node would be 3,375 in
the product model, while in the proposed model, only 15 labels are needed for each node.

Smoothness Cost.Previous methods [1, 11] usually adopt thelinearly penalizing func-
tion for the smoothness cost, for example,

θst(xs,xt) = λst min
{

|d(xs)−d(xt)|,T
}

. (6)

We empirically found a convex prior with higher order polynomial showed better
results. It assigns substantially low cost on tolerable label difference and gives more
flexibility on mesh deformation.

θst(xs,xt) = λst min
{

|
1
α

(d(xs)−d(xt))|
n
,T

}

, (7)
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Figure 4: Registration result in synthetic data set. Top andmiddle row images show
two different slices foraxial section while bottom row showscoronal section. (a) Input
volumeAsyn

1 , (b) Reference volumeA1, (c) Result from the conventional model, (d) Result
from the proposed model.

wheren ≫ 1 andα sets the boundary in which the function assigns almost zero-cost
for small displacement difference. For convenience in implementation, we introduce an
alternative definition with two linear functions [9]. As we set c1 ≫ c2 in accordance with
n, (8) approximates (7).

θst(xs,xt) = λst min
{

max
{

c1(|di(xs)−di(xt)|−α),c2|di(xs)−di(xt)|
}

,T
}

. (8)

5.1 Synthetically Deformed Data

The ground truth data for 3D registration generally is not available. For quantitative
analysis we synthetically deformed corresponding reference volumes from the clinical
data, obtaining ground truth vector field to calculate exacterrors. For a pair of arterial and
portal volumes, we manually put landmarks on some common characteristic features and
matches them. Then the TPS(Thin-Plate Spline) interpolation generates new volumes for
each pair, providing pixel-wise displacement vector fields. From the five volume pairs,
ten synthetic volumes are generated and denoted asAsyn

i andPsyn
i . Note thatAsyn

i will be
almost identical toPi (and vice versa) except the modality if the landmarks are sufficiently
extracted.

We have tested four models characterized by the node decomposition and the smooth-
ness cost. The proposed model uses the decomposed model withthe cost function (8).
The conventional model can be considered as a product model with the smoothness cost
function (6) as in [1]. Figure 4 shows the registration results from these two models. Dif-
ference images are also given in Figure 5 where the background color demonstrates no
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Figure 5: Intensity difference images in synthetic data setA1 andAsyn
1 . Bright areas indi-

cates big differences. (a) Initial difference, (b) After registration using the conventional
model and (c) the proposed model.

difference. As shown in Figure 5(b) and (c), both of the methods successfully removed
white areas except some object boundaries and some details in lung section, which is
smaller than a mesh resolution. Actually, all the four models present similar performance,
at least in visual sense. Note that no particular qualitative degeneracy is found in the result
from the decomposed model, compared to the product model.

Now we turn to the quantitative analysis. Table 1 shows intensity and vector differ-
ences with elapsed times in average of the data sets. We assume, without loss of gen-
erality, RMS errors implies overall accuracy while max errors indicates flexibility of the
models. As can be seen, the proposed smoothness cost outperforms the conventional
smoothness cost, also converging faster as well. In spite ofthe weak relaxation [14] in the
optimization technique, we can hardly find worse performance of the decomposed model
in terms of accuracy and flexibility. On the other hand, convergence time takes 5,000∼
10,000 seconds for the product models, while it only takes 60∼ 90 seconds for the pro-
posed models. Note that the precalculation time for the datacost is not included, which
takes several minutes for all models.

5.2 Clinical Data

In clinical tests, we transformed the arterial phaseAi to register the portal phase volume
Pi [4]. The registration result using the proposed model is denoted asPreg

i . A malignant
tumor of liver shows different contrast characteristic to normal liver tissues after the con-
trast medium perfusion. Thus the intensity is inherently (and deliberately) different in
two phases even in the same organs, as shown in Figure 6(a) and(b). Compared with
the initial difference in Figure 6, the difference after registration in Figure 6(d) actually



Table 1: Statistical results on synthetically deformed data sets
product decomposed

initial sc (6) sc (8) sc (6) sc (8)

i rms 200.85 48.53 46.82 48.75 47.33
i max 2051.00 1381.00 1348.20 1379.25 1367.38
v rms 5.70 1.44 1.26 1.43 1.31
v max 15.74 12.57 11.63 12.52 11.96
time 37.16 9504.46 5086.47 85.73 65.08

(a) (b) (c) (d)

Figure 6: Registration result in clinical data using proposed method: (a) Arterial phase
A4, (b) Portal phaseP4, (c) Signed difference imageA4−P4 before registration, (d) Signed
difference imageA4−Preg

4 after registration. The registration result actually shows better
visual contrast for a liver cancer as indicated by arrows.

provides enhanced visibility (as intended) for ahypervascular hepatocellular carcinoma,
i.e., liver cancer. The result also shows our method works fine with the images of different
modality, suggesting a plausible application for medical diagnosis.

6 Conclusion

In this paper, we have presented an efficient algorithm for the registration of deformable
3D objects. Our approach formulates the problem with discrete labeling on MRFs model
and reduces the number of labels by the decomposed model. Theenergy function is opti-
mized by the modified TRW-S handling higher order cliques. Inthe experimental results,
we have shown the proposed model significantly enhanced the computational efficiency
of the problem, without losing accuracy and robustness in both qualitative and quantita-
tive sense. Still, the required time to calculate the data cost in three dimensional search
space is tremendous and should be addressed in the future.
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