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Abstract

An efficient registration algorithm working on non-rigid 3@bjects is
presented. We formulate the registration as a discretdiigberoblem on
MRFs model whose energy can be minimized by optimizatiohn&pies in
the literature. Due to the huge search range in three-dimesisspace, pre-
vious approaches produces a vast amount of labels for a ndatie MRFs
graph. To reduce the number of labels, we decompose a nadéiiee nodes
so that the labels in each node represent just one-dimaaisisplacement.
This procedure introduces a factor node with a clique pa@ktotf size three,
defining ternary interaction between the decomposed ndtleconvert the
factor node into pairwise interactions and adopt the teseeighted message
passing technique, which guarantees the convergence ef loound of the
energy function. In experiments we use clinical and syintb#y deformed
3D medical images. Result shows the proposed method erdhaanguta-
tional efficiency without loss of accuracy.

1 Introduction

Non-rigid 3D registration is the process to match the idmtvolumes that are mis-
matched in a non-linear or non-uniform manner in two or mdaesvs. As the other
low-level vision problems such as stereo matching and aptiows, it deals with the

most fundamental part of computer visiore, view correspondences. Thus, a plausible

method for 3D registration will be of great importance imsgm various fields in the lit-

erature, also giving lots of useful applications: the maatpcal and popular one may be

found in medical imaging field.

Conventional approaches utilize a mesh structure supesatpon input volumes.
Deformation of the mesh is estimated first, then calculdtirgrest of voxel transforma-
tions is followed. Feature-based methods [7, 6] relies adraarks extracted from input
image pairs. The mesh deformation is controlled by matctiegcorresponding points
and completed by surface interpolation. An answer is giverelatively short time, but
may not accurate enough for some applications. In contrastlkertet al. [8] proposed
an image-based approach which searches for pixel-wiséasitieis and gradually trans-
forms the floating image to align with a fixed image. An enengyction is formulated
using image matching cost and mesh regularizing cost, atichized through a classical
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techniquei.e,, a gradient descendent algorithm assuming local convegithough the
algorithm gives a state-of-the-art accuracy, the compmrtadime is tremendous. Further-
more, a simple variation of the cost definition would requirat amount of time again,
since the optimization depends on the gradient of the erfargtion.

Recently researchers proposed new approaches refornguilad registration as a dis-
crete labeling problem on MRFs model, making the optimiatechnique independent
from the cost definitions. Glockett al. [1] utilized this strategy and covered inter and
intra modality in medical imaging field. They limited seamemge of similarity match-
ing cost by assuming relatively small local deformation bBgidndicating specific search
directions,e.g. eight directions for 2D problems. In this way, they were ablgreatly
reduce the number of labels in each graph node, however tieaary might degenerate if
applied to the problems with severe deformations. Teirad. [11] applied the graph cuts
to the 2D and 3D registration of medical images and compdreid algorithm with the
previous innovative works such as FFD [8] and DEMON [5]. Etleough they showed
fine experimental results, however, taking every pixelsnavidual nodes may cause
huge computational complexity, especially in the 3D prohle

Generally, a method to address intensive deformation wdaldand huge number
of labels to cover a possible target object in a high dimaraisearch range. Thus it
would suffer from big computational burden, because thte sikthe-art optimization al-
gorithms increase complexity directly proportional to thenber of labels. In the case of
2D registration, the method proposed in [9] could be a godutism. It decomposes a
node of a 2D displacement vector into two nodes of 1D vectodetrease the number of
labels. A pairwise potential energy is defined on the intisadetween the decomposed
nodes. The total energy term can be easily minimized usingesepted optimization
technique. However, if in a 3D problem, the process wouldiggdhigher-order inter-
action between the decomposed nodes, and directly appigangxisting optimization
algorithm is not straightforward. In this paper we proposegel approach to decom-
pose a node in the 3D registration problem by introducingtofanode with higher-order
cligue potential. We also provide a way to convert the fagtaph into a model with sim-
pler interactions and an efficient implementation to optient through message-passing
based methods. As a result, the proposed algorithm extyeneglice the computational
complexity of the 3D registration.

2 Registration as A Discrete Labeling Problem

We introduce the basic framework and review the MRFs fortiuefor it. Throughout
this paper, we refer a fixed volume eference and a floating volume asiput. Our goal
is to find the optimal transformation vector field(x), wherex indicates the input vol-
ume domain. Assuming local deformation, we superimposef@rm@ble mesh on the
input volume. The overall strategy can be stated as folldvirsd thediscrete displace-
ment vectors for control points, then the pixel-wise defation field could be calculated
accordingly using the FFD model based on cubic B-splines [8]

For the corresponding MRFs model, we start with some dedimiti Let¥ be an
undirected graph, denoting the deformable mesh, with netl¢'sand edge sef’. A
nodes € ¥ corresponds to a control point in the mesh. lebe a random variable in
some discrete sample spa&g = {1,...,L}, representing the label of the nodeWith



Figure 1: Conventional model. A node represents a contnoit o the mesh, having a
label of 3D displacement vector. Unary potentials are diesdrin black squares while
binary potentials in white squares.

all the random variables in each node, we obtain a vdataZ of sizen = |7/, where
L =L %xL ... x Ly The goal is restated as finding the best configurdtitivat
minimizes an energy formulation defined by potential fumtsi as follows,

E(116) = ZVGS(|S)+( ; B (Is, ) - 1)
se’ st)es

The unary potential functiofs(ls) indicates a data cost defined by similarity measures
between input and reference volumes. The binary poteyidt, l;) denotes a smooth-
ness cost computed using the label difference betweenadjaodes andt. Figure 1
presents this model describing a mesh control points as @, rrodnary potentials as a
black square, and a binary potential as a white square. Tlereqodes can be seen as
a factor node [3] as well, since factor nodes can represeitusatype of potential func-
tions,e.g., unary, binary or ternary potentials. We will denote thedacode set as# to
alternatively indicate edges with higher order cliques.

3 Node Decomposition

For the conventional model, we can introduce a funatiors — R3, mapping each label
Is to a 3D displacement vectdsls). Without loss of generality, we assume each dimen-
sion of displacements has the same discrete set of value$—D,—D+1,...,0,...,D—
1,D} whereD € N controls the displacement width. Then, the model produakes|$
which is cubic to the displacement width, that|i&’| = | 2|3 = (2D + 1)°.

The problem is, this label size actually cause heavy contipat complexity for
discrete optimization algorithms. For example, the apjnaexe computation times for the
state-of-the-art methods such as graph cuts and TRW-S(@vé||.#|) andO(| 7 ||.Z|?)
respectively, becomin®(|7||2|®) and O(|#||2|°), where the displacement widih
usually is not trivial.

We address this challenge by adapting deeomposed model [9]. A nodese 7 is
decomposed into three nodgs & ands*, constituting new node set&*, ¥Y and ¥,
respectively. These node sets construct individual grapletsires introducing new edge
setsj.e, @*X=(¥*,&%),9Y = (¥Y,8Y) and¥9* = (V% &%). Note that the graph structures
are identical to the original grap#i = (7', &’). As like the original edge sef, the edge



Figure 2: Decomposed model. A factor node is introduced fineéehe interactions
between thehree decomposed nodes. Note that this factor node is describadlack
square, implying it originated from the unary potential igie 1.

sets&*, &Y, &% define the smoothness cost between neighboring nodes indivédiual
graphs. We call these pairwise interactionsriisa-volume edges.

We also define the interaction between theee decomposed nodes. A factor node
f € # is introduced to connect the decomposed nodes as shownureRig This factor
node is defined in a ternary potential function coming from timary potential of the
original graph,e.g., fsu(ls,ls,l¢) = 65(ls) where the original labels indicates a 3D
vector displacement ofig,ly,lsz). We call this factor node set aster-volume edges.
Unary terms for the decomposed nodes are definedias, @ (Ig) = 0 wheres € #*U
YYUYE

The proposed model allows a label in each node to repressinofe-dimensional
displacement in the Cartesian coordinate. We can modifyrtapping function asdl :
% — R wherese ¥*U¥YU7¥?% Energy formulation in (1) is accordingly modified as
follows,

E(1|6) = Z O« (s, It) + Z Bsu(ls, lt, lu) - (2)
(st)es*usYus? (st,u)e#
Consequently, the problem can be reformulated as minigpitie energy function defined
with binary and ternary clique potentials.

While we are able to assign just one-dimensional label oh eade, the number of
nodes increases threefold. Note, however, that this dond# much more favorable since
the complexity become®(|7||2|) andO(|7||2|3) for the graph cuts and the TRW-S.

The MRFs energies computed by same configurations of theuptedodel and the
decomposed model are exactly same. However, Werner [14é¢ptbat the solution space
of the decomposed model properly contains that of the prtadadel; that is, lower bound
of the decomposed model is less tight when solved by LP-atilax. This can be another
trade-off for the simplicity besides the doubled numberades, though not serious.

4 Optimization using Tree-Reweighted Message Passing

For optimization, we are not allowed to choose graph cusettanethods, because the
clique potentials defined on inter-volume factor nodes atimcluded in any type of
metric function. Instead we adopt message passing basdwhdsetvhich does not de-
pend on the type of spatial prior. Recently the tree-rewteigimessage passing (TRW)
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Figure 3: Conversion from a factor graphs to pairwise irdéoas: (a) A cycle-free factor
graph, (b) A graph with pairwise interactions denoted bytevkguares. The factor node
is replaced by an auxiliary no@e (c) A converted graph from (a) to calculate message to
the root nodey, (d) A converted graph from (b) to calculate message to therrodeu.

algorithms [12, 2] are presented in the literature showimpllent performance [10]. The
TRW methods decompose a graph into trees where an exact M\Becaalculated by
min-sum belief propagation on each tree. This scheme letnigthods provide a lower
bound for the energy. In particular, teequential TRW (TRW-S) [2] adjusts the message
updating schedule and yields a lower bound guaranteed m#d@ase. Thus this algo-
rithm is preferable compared to the loopy belief propaggti8P) of which scheduling
is heuristic and convergence is unknown.

4.1 Conversion from a Factor Node to Pairwise Interactions

Since the TRW-S assumes pairwise interactions on edges&tta reorganize our graph
model which involves the higher-order factor nodes. Hemjmtroduce only conceptual
idea of the conversion. Readers are referred to [13, 12]dtailed proof.

In a cycle-free factor graph, passing a message to the rat#t imzludes following
steps [3]: Replace each variable node with a sum operatoplaB® each factor node
with a “sum and add by the factor nod&operator, and between a factor notland its
parentu, insert a min g, operator, where- {u} denotes the node set in the graph except
the nodeu. Figure 3(a) and (c) demonstrate this process of convefsiom (a) to (c).
Now consider a factor graph in Figure 3(b). If we approphatiefine the node and
the pairwise factor node (depicted in blank square) betwwales, an equivalent graph
(d) would be obtained throughout the process. Having théasirstructure, (c) can be
easily converted to (d). Consequently, by introducing axil@uny nodea, we can convert
a factor graph into a graph with pairwise interactions.

To this end, the pairwise factor node and the auxiliary reoee(b) should be carefully
designed. We associate a new label Z whereZ = % x % x 4, with a unary and
a binary potentials as follows

Ya(2) = Bgu(ls, It lu), )



0 ifz =l .
Wai(z,1i) = { o (I)tﬁerwise Vie{st,u}. (4)

Note that the functions force the auxiliary naai follow the configurations in nodes
s, t andu. After the conversion, energy model (2) changes to follgwvin

ENO)= Y Gl + Y @+ 3 gazh). ()

(st)esXusyus? ac’z (aj)eés

4.2 Efficient Implementation

Although we successfully changed the factor nodes intonpsérinteractions, we cannot
avoid to include the auxiliary nodes which have vast amoditdlmel space. Due to the
min_ g,y operator in message passing, the auxiliary node can in@gce|%) of time
complexity as well a©O(|2|*) of memory space to store the message. However, the
storage fonyy actually is not needed since it never adds a value on a mes¥égean
ignore all summations if; # x. Furthermore, as the auxiliary node should follow the
configurations of nodesandt when they are fixed, the search space ofgioperator

is reduced t®(|Z|) which is same as the ordinary nodes. Thus, the complexityrbes
0O(|2/?) as like general pairwise TRW-S, by just modifying logicslie implementation.

5 Experiments

Medical images include good examples of deformable obje@® volumes. We conduct
experiments on volume data of liver CT images. The test Clinmek are scanned from
five patients, indexed by at arterialfy) and portal phaseR(, which means before and
after contrast medium injection. The volumes have the siZZ56 x 256 x S, whereS,
ranges from 70 to 170. The mesh spacing is equally set to Bbsdiory, y, zcoordinates.
All experiments are performed on an Intel Pentium 4, 3.6 GHzimme with 3.12 GB
RAM.

Data Cost. Since the optimization process is independent from the itiefinof data
cost, we can use various types of data cesf, the SSD(Sum of Squared Difference),
the NCC(Normalized Cross Correlation) or the NMI(NormatizMutual Information).
For simplicity, we chose the SSD with matching cubes ok16 x 16 where the search
space covers 15 15x 15. Note that the number of labels for a node would be 3,375 in
the product model, while in the proposed model, only 15 sbet needed for each node.

Smoothness CostPrevious methods [1, 11] usually adopt theearly penalizing func-
tion for the smoothness cost, for example,

B (X5, %) = Ag min{ |d(xs) — d(x)], T} . (6)

We empirically found a convex prior with higher order polymal showed better
results. It assigns substantially low cost on tolerablellatifference and gives more
flexibility on mesh deformation.

6 (06, ) = Amin {2 (4~ d0))|" T} ™)



Figure 4: Registration result in synthetic data set. Top amdidle row images show
two different slices foaxial section while bottom row showsronal section. (a) Input
vqumeAiy”, (b) Reference volumAy, (c) Result from the conventional model, (d) Result
from the proposed model.

wheren > 1 anda sets the boundary in which the function assigns almost zesb-

for small displacement difference. For convenience in an@ntation, we introduce an
alternative definition with two linear functions [9]. As wetg; > ¢, in accordance with

n, (8) approximates (7).

By (X6, %) = Ag min{ max{ ca ([di (xs) — di (%)| — @), Ca]ch (xs) —di(xt)|},T} . @®)

5.1 Synthetically Deformed Data

The ground truth data for 3D registration generally is ndailable. For quantitative
analysis we synthetically deformed corresponding refezarolumes from the clinical
data, obtaining ground truth vector field to calculate eraairs. For a pair of arterial and
portal volumes, we manually put landmarks on some commoractexistic features and
matches them. Then the TPS(Thin-Plate Spline) intermmiaienerates new volumes for
each pair, providing pixel-wise displacement vector fielBisom the five volume pairs,
ten synthetic volumes are generated and denoté@asndP>". Note thatA™" will be
almostidentical t&? (and vice versa) except the modality if the landmarks arfcserfitly
extracted.

We have tested four models characterized by the node deitiopand the smooth-
ness cost. The proposed model uses the decomposed modéhevitbst function (8).
The conventional model can be considered as a product mattethe smoothness cost
function (6) as in [1]. Figure 4 shows the registration resfrbm these two models. Dif-
ference images are also given in Figure 5 where the backdroolor demonstrates no
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Figure 5: Intensity difference images in synthetic dataﬂgeindA?’”. Bright areas indi-
cates big differences. (a) Initial difference, (b) Aftegistration using the conventional
model and (c) the proposed model.

difference. As shown in Figure 5(b) and (c), both of the mdthsuccessfully removed
white areas except some object boundaries and some detdilsg section, which is
smaller than a mesh resolution. Actually, all the four megheesent similar performance,
at least in visual sense. Note that no particular qualigatiegeneracy is found in the result
from the decomposed model, compared to the product model.

Now we turn to the quantitative analysis. Table 1 shows sitgrand vector differ-
ences with elapsed times in average of the data sets. We essuithout loss of gen-
erality, RMS errors implies overall accuracy while max esrimdicates flexibility of the
models. As can be seen, the proposed smoothness cost outpethe conventional
smoothness cost, also converging faster as well. In spitesofieak relaxation [14] in the
optimization technique, we can hardly find worse perforneasfdhe decomposed model
in terms of accuracy and flexibility. On the other hand, cogeace time takes 5,000
10,000 seconds for the product models, while it only takes @D seconds for the pro-
posed models. Note that the precalculation time for the dasais not included, which
takes several minutes for all models.

5.2 Clinical Data

In clinical tests, we transformed the arterial phAséo register the portal phase volume
P, [4]. The registration result using the proposed model isodahad%reg. A malignant
tumor of liver shows different contrast characteristic tmmal liver tissues after the con-
trast medium perfusion. Thus the intensity is inherentlyd(deliberately) different in
two phases even in the same organs, as shown in Figure 6(gppn@ompared with
the initial difference in Figure 6, the difference afteristgation in Figure 6(d) actually



Table 1: Statistical results on synthetically deformeddats
product decomposed
initial sc(6) | sc(8) sc(6) | sc(8)
irms 200.85 48.53 46.82 48.75 47.33
imax | 2051.00| 1381.00| 1348.20| 1379.25| 1367.38

v rms 5.70 1.44 1.26 1.43 131
vV max 15.74 12.57 11.63 12.52 11.96
time 37.16 | 9504.46 | 5086.47 85.73 65.08

Figure 6: Registration result in clinical data using pragsbsnethod: (a) Arterial phase
Ay, (b) Portal phasgy, (c) Signed difference imagl, — P, before registration, (d) Signed
difference imagé\, — Pjeg after registration. The registration result actually shdwetter
visual contrast for a liver cancer as indicated by arrows.

provides enhanced visibility (as intended) fdmgoervascular hepatocellular carcinoma,
i.e, liver cancer. The result also shows our method works finle thi images of different
modality, suggesting a plausible application for medi¢agdosis.

6 Conclusion

In this paper, we have presented an efficient algorithm ferdyistration of deformable
3D objects. Our approach formulates the problem with disdedbeling on MRFs model
and reduces the number of labels by the decomposed modetnEngy function is opti-
mized by the modified TRW-S handling higher order cligueshmexperimental results,
we have shown the proposed model significantly enhancedotimputational efficiency
of the problem, without losing accuracy and robustness th faoalitative and quantita-
tive sense. Still, the required time to calculate the datd tothree dimensional search
space is tremendous and should be addressed in the future.
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