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Abstract

We propose a novel method for pose-invariant facial expression recognition
from monocular video sequences that combines stochastic and determinis-
tic search processes. We use the simple face model called variable-intensity
template, which can be prepared with very little time and effort. We tackle
the two issues found in previous work on the variable-intensity template: low
accuracy in head pose estimation, and assumption violations due to external
intensity changes such as illumination change. We mitigate these issues by
introducing the deterministic approach into the stochastic approach imple-
mented as a particle filter. Our experiment demonstrates significant improve-
ments in recognition performance for horizontal and vertical head orienta-
tions in the range of ±40 degrees and ±20 degrees, respectively, from the
frontal view.

1 Introduction

To realize sophisticated human-computer interaction systems and to automatically ana-
lyze human conversation structure [12], a number of image-based facial expression recog-
nition methods have been proposed. Most of them adopt the frontal-face assumption
[1, 9, 14, 16]: The image shows a nearly frontal view of the user’s face and the user does
not rotate the head significantly. This assumption is, however, often violated in real situa-
tions such as multi-party conversations, where people will often turn their faces to look at
other participants. Hence, unless a head-mounted self-shot camera is allowed, e.g. [13],
we must simultaneously handle the variations in head pose as well as facial expression
changes.

For handling out-of-plane head rotations, the face model1 should be accurate enough
to reliably separate a change in face appearance into facial pose and expression compo-
nents. In other words, the use of inaccurate face models degrades the accuracy of both

1It refers to a set of a face shape model and facial expression model in this paper.
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head pose estimation and facial expression recognition. Unfortunately, it is not easy to
generate an accurate face model for each user because the intra-personal variations in hu-
man face shape and expression are nontrivial; simply preparing one general model is not
satisfactory. There are two main approaches to resolving this issue: creating an accurate
person-specific face model and utilizing a general face model with facial features that well
handle some error.

Gokturk et al. [6] and Wang et al. [18] generate a person-specific model by using
stereo cameras and a 3D digitizer, respectively. Accordingly, this approach cannot be
applied to monocular video sequences. Dornakia and Davoine [5] adequately fit a general
face model to each user by shifting multiple control points manually, a task that is too
expensive to be practical. Lucey et al. [10] reconstruct the user’s face model from just
monocular images by a structure-from-motion technique. However, in their experiments,
the recovered face model rather degraded the recognition rates.

Some methods try to handle out-of-plane head rotations by using robust facial features
without accurate face shapes. Black and Yacoob [3], and Tong et al. [15] utilize optical
flow and wavelet coefficients in facial part regions as features, respectively. Although the
plane shapes they use are convenient for calculating dense features, they cannot correctly
express the large change in facial appearance caused by significant out-of-plane head
rotation.

Kumano et al. [8] recognize facial expressions from changes in the intensities of a set
of sparse interest points fixed on a cylinder. Their interest points are located away from the
edges of facial parts, to detect the shift of neighboring facial parts as well as to alleviate
the impact of the misallocation caused by approximation error in the facial shape. Their
model, the variable-intensity template, is advantageous since it can be prepared with little
time and effort. To estimate facial pose and expression simultaneously, they use a particle
filter, which maintains their posterior probability density function given input face images
with a set of multiple hypotheses stochastically generated. This makes the estimation easy
to avoid local maxima and to recover from temporary disturbance.

The method in [8], however, still has two shortcomings: First, the stochastic search
generally requires a large number of hypotheses to accurately estimate the target states.
Furthermore, since a rough shape, a cylinder, is used, the most likely state may be signif-
icantly different from the actual state. Second, their method cannot handle large changes
in face intensity such as those caused by illumination changes or vertical head rotations.

To overcome these two shortcomings, two key features are newly introduced in this
work: For the first problem, the stochastic approach of particle filters is combined with
the deterministic approach of a gradient method. This makes the estimation robust and
effective. First, an approximate estimator is robustly provided by the particle filter. It is
then seeded into the maximum likelihood estimation (MLE) that is efficiently solved by
the gradient method. To make the search meaningful, we utilize an average face model as
the face shape. For the second problem, the intensities of the interest points are determin-
istically adjusted by an iteratively reweighted least squares technique, without increasing
the dimension of the stochastic search space.

Consequently, this paper has two explicit advantages over the work in [8]:

1. Higher performance in the estimation of both facial pose and expression.

2. Illumination-invariability.
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Figure 1: (Left) An example of a set of interest points P: Small white rectangles repre-
sent interest points. (Right) Intensity distribution model I: The intensity distributions of
interest points, described as normal distributions, change with facial expression.

Our method can be considered as one of regularization in maximum likelihood esti-
mation, where a prior term is adopted. In general regularization, the weight of prior is
gradually reduced, while our framework first considers prior density and likelihood as
equal terms, and the prior is ignored thereafter. To the best of our knowledge, at least
for facial expression recognition, this is the first attempt to introduce a posterior den-
sity obtained by a stochastic search as a prior for gradient-based maximum likelihood
estimation. For example, Chang and Ansari [4] guide all hypotheses along the gradient
directions of the likelihood function by a mean shift algorithm. This process is beneficial
if the task is just object tracking and the likelihood function is very smooth. However,
such a likelihood function does not suit for the discrimination of facial expressions.

The remainder of this paper is organized as follows. First, facial expression recogni-
tion based on the variable-intensity template is briefly introduced in Section 2. Section
3 describes our proposed method. Then, in Section 4, experimental results are given.
Finally, a summary and future work are given in Section 5.

2 Stochastic estimation with variable-intensity templates

In this section, we briefly overview the method in [8] as well as several modifications
introduced in this work. The system flow with the variable-intensity template consists
of two stages. First, a variable-intensity template is prepared for each person from just
a general face shape and one frontal face image for each facial expression (hereinafter
referred to as training images). Second, the facial pose and expression in a test sequence
are estimated.

2.1 Variable-intensity templates

The variable-intensity template [8] consists of three components: a rigid face shape model
M, a set of interest points P, and an intensity distribution model I. The variable-intensity
template is basically person-specific except for the shape model. This achieves high
recognition performance. As the face shape model M, unlike the cylinder used in [8],
we use an average face model2. The fitting of the face model is described in Section
2.1.1.

2We used an average head dummy of Japanese young males, published by Digital Human Research Center,
Advanced Industrial Science and Technology (AIST), http://www.dh.aist.go.jp/research/centered/facedummy/.



The set of interest points, P = {pi}Np
i=1, consists of sparse multiple points fixed on the

shape model M, as shown in the left part of Fig.1. The variable pi denotes the image
coordinates of the i-th interest point in the training image, and Np denotes the number of
interest points. These interest points are extracted as dipoles that straddle the edges of
facial parts, such as eyebrows, in the neutral expression image. Details are provided in
[8].

The intensity distribution model I describes how the interest point intensities vary
with different facial expressions. As shown in the right part of Fig.1, the interest point
intensities change strongly due to the shift of neighboring facial parts. This property
enables us to recognize facial expressions from observed interest point intensities. The
interest point intensities are assumed to be independent of each other, and to follow a
normal distribution in all facial expressions. Hereinafter, the mean and standard deviation
of the i-th interest point for facial expression category e(∈ {1, . . . ,Ne}) are denoted by
μi(e) and σi(e), respectively.

2.1.1 Training of variable-intensity template

Starting with just the general face shape and the training face images, or one frontal
face image for each facial expression, the variable-intensity template is automatically
prepared for each person. In the training images for the same subject, the face is assumed
to be stationary between all facial expressions3. We actually captured the face of each
user without any head movement during the demonstration of facial expressions. We set
the intensity mean μi(e) to be the value recorded from the training image labeled with
expression e at image coordinate pi. Furthermore, we assume that standard deviation σi

is proportional to the mean and empirically set it as σi = μi/3.
We fit the average face shape to each user as follows: (1) fit the center of the shape

model to the center of face region in the training image (neutral expression) as detected by
the method of [17], (2) stretch the shape model in the horizontal and vertical directions to
match both face width and height; stretching in the depth direction uses the scaling factor
given as the square root of the product of vertical and horizontal scaling factors.

2.2 Estimation of posterior probability density function

The joint posterior probability density function (pdf) of facial pose and expression at time
t given all face images up to that time, I1:t , is recursively represented as follows:

p(ht ,et |I1:t) ∝ L(ht ,et |It)
∫

p(ht |ht−1) ∑
et−1

P(et |et−1)p(ht−1,et−1|I1:t−1)dht−1 (1)

where L(h,e|I) denotes joint likelihood of head pose h and facial expression e for image
I (described in Section 2.3), and the facial pose state h and expression state e follow
first order Markov processes; ht and et are assumed to be conditionally dependent given
image It . The facial pose state consists of the following six continuous variables: the
two-dimensional translation in the image plane, [x y]T, three-dimensional rotation angles
(pitch, θx, yaw, θy, and roll, θz), and scale s. The posterior pdf in Eq. (1) is stochastically
estimated in the frame work of a particle filter [7].

3The position and size of the faces may vary for different persons.



The particle filter approximates the pdf as a set of weighted hypotheses called parti-

cles. Each particle expresses a state and its weight w: {h(l)
t ,e(l)

t ,w(l)
t }N

l=1 and ∑l w(l)
t = 1,

where N denotes the number of particles. In our case, w(l)
t ∝ L(h(l)

t ,e(l)
t |It).

For the head motion model p(ht |ht−1), rather than the simple random walk model used
in [8], we utilize an adaptive random walk model where the system noise increases as the
head moves more significantly: ht = ht−1 +g(vt−1), where v denotes the velocity of head
pose, and g(v) is a zero-mean multivariate Gaussian process with covariance that varies
according to |v|. For covariance adaption, we follow [11] except that we assume that the
head pose components are independent of each other, and we don’t use a higher-order
motion model to avoid overfitting. With regards to facial expression, we set P(et |et−1) to
be equal for all expression combinations.

Estimators of facial pose and expression, h̃t and ẽt , are calculated as their expectations

of marginal density: h̃t = ∑l w(l)
t h(l)

t and ẽt = arg maxe ∑l w(l)
t δe(e

(l)
t ), where δe(e′) is the

indication function such that δe(e′) = 1 if e = e′, and δe(e′) = 0 otherwise.

2.3 Likelihood function

We calculate the likelihoods based on the difference between observed intensities and
the intensity distribution model I where each point intensity is expressed as a normal
distribution:

L(h,e|I) =
Np

∏
i=1

1√
2πσi(e)

exp

[
−1

2
ρ (d(Ii(h),Ii(e)))

]
, (2)

where Ii(h) denotes the intensity in image I at the position of the i-th interest point under
head pose h, qi(h), and Ii(e) is the intensity distribution model for the i-th interest point in
facial expression e. Image coordinate qi(h) is calculated by a weak-perspective projection
of the three-dimensional coordinates of the i-th interest point on shape model coordinate
system, xi. The coordinate xi is obtained by orthogonal projection of image coordinate pi
onto shape model M.

The distance d(·, ·) is defined as follows:

d(Ii,Ii(e)) =

{ γi Ii −μi(e)
σi(e)

, if visible

do, otherwise (occluded)
(3)

where γi denotes an intensity adjustment factor (described in Section 3.2). If the interest
point whose surface normal obtained from the shape model is not pointing toward the
camera, it is considered to be occluded and is given a constant distance do.

The function ρ(·) in Eq. (2) denotes a robust function. Unlike the discontinuous func-
tion in [8], we use a continuously differentiable function, the Geman-McClure function,
to calculate its derivatives (see Section 3.1): ρ(ξ ) = c ·ξ 2/(1+ξ 2), where c is a scaling
factor. This makes the estimation more robust against noise such as imaging noise and
large position shifts due to shape model error.



3 Combining stochastic and deterministic search

We introduce two kinds of deterministic search based on maximum likelihood estimation
into the particle-filter-based stochastic search. The targets of the deterministic search are
to efficiently enhance the estimation performance, and to adjust face intensity to offset the
effects of external factors such as illumination changes.

3.1 Estimation improvement

To efficiently improve the estimation, we utilize the approximate estimators robustly ob-
tained by the particle filter as a seed for the deterministic search. Moreover, we apply
the deterministic search only for head pose estimation. That is, we immediately adopt
the facial expression recognized by the particle filter, ẽt , as the final expression estimator.
This is because, with the variable-intensity template, the facial expression recognition is
often easier than accurately aligning head pose, due to the definition of interest points in
the vicinity of facial parts. Simply enhancing the facial pose estimation will also improve
the facial expression recognition by reducing the wasteful particles.

Based on Eq. (2), MLE for head pose is simplified as follows:

ĥt = arg max
h

L(h|ẽt , It) (4)

= arg min
h

∑
i

ρi,t (5)

where ρi denotes ρ(d(Ii(h),Ii(e))). To solve this equation, we utilize a gradient method,
the quasi-Newton method in this paper. We start the gradient method from two initial
guesses, or seeds: One is the current estimator by the particle filter, h̃t . The other is
the expectation given only the adjacent (just prior) MLE. With our random walk model
(Section 2.2), the expectation equals the estimator of immediate prior, ĥt−1. These two
seeds are effective for quick motions and slow motions, respectively.

These seeds are individually updated as

ĥ
(m)

= ĥ
(m−1) −α ·∇∑

i
ρi (6)

where m is the iteration step, and α(> 0) is the learning factor. The j-th component of
the gradient vector ∇∑i ρi is transformed into ∂/∂h j(∑i ρi) = ∑i ∂ρi/∂h j. According to
Eq. (3),

∂ρi

∂h j
=

∂ρi

∂di

∂di

∂ Ii

(
∂ Ii
∂Xi

∂Xi

∂h j
+

∂ Ii
∂Yi

∂Yi

∂h j

)
(7)

where ∂ Ii/∂Xi and ∂ Ii/∂Yi are image gradients of the image It at image coordinates
qi(h) = [Xi Yi]T. Finally, in the two updated estimators, the more likely one is selected
as the final head pose estimator.

3.2 Intensity adjustment

We adjust the intensity of interest points observed in the input image to handle changes
in intensity itself, e.g. illumination changes or vertical head rotation. Assuming that the



rate of change in interest point intensity is uniform in small facial sub-blocks, we define
the intensity adjustment factor as MLE in Eq. (2), given facial pose h and expression e:

γ̂b = arg min
γb

∑
i∈Pb

ρi (8)

where γb and γ̂b represent the intensity adjustment factor for facial sub-block b and its
MLE, respectively, and Pb(⊂ P) denotes the set of interest points belonging to sub-block
b. In practice, we divide the face into four facial blocks, left eyebrow and eye / right
eyebrow and eye / left parts of nose and mouth / right parts of nose and mouth. This
robust regression problem can be efficiently solved by using an iteratively reweighted least
squares algorithm [2]. Although this uniform intensity change assumption is not strictly
valid, the small adjustment error does not severely disturb facial expression recognition.
The reason is that the interest points defined in the vicinity of facial parts yield significant
differences in intensity between facial expressions.

The intensity adjustment factor is calculated with each change in head pose h and/or
expression e, that is, the generation of new particles (Section 2.2), or the update of head
pose estimator with the gradient method in Eq. (7). Because the intensity is adjusted
frame by frame, rapid changes in illumination can be handled.

4 Experimental Results

To evaluate the robustness of our method against out-of-plane head rotations, we per-
formed two types of tests on video sequences: In Test 1, subjects exhibited multiple facial
expressions with the head fixed in one of horizontal or vertical directions relative to the
camera: horizontally -40, -20, 0, 20 and 40, vertically -20, 0 and 20 (degrees). In Test 2,
a subject freely changed horizontally and vertically orientations of the head. The target
facial expressions were neutral, angry, sad, surprise and happy, or Ne = 5. Nine subjects,
seven males and two females in their 20s to 40s, participated in Test 1 with horizontal
head rotation once. Four of these males also participated in Test 1 with vertical head
rotation once. One of them participated in Test 2 once4.

Grayscale video sequences with a size of 512×384 pixel were captured at 15 fps for
each subject. The number of particles was set to 1,500, and the processing time was about
50 ms/frame on a Core 2 Extreme processor at 3.00GHz with 2.0GB RAM.

4.1 Test with fixed head direction (Test 1)

In Test 1, the subject demonstrated five facial expressions one by one with the head fixed
in horizontal or vertical directions relative to the camera for a duration of 60 frames fol-
lowed by a 60 frame interval, according to instructions (used as ground truths) displayed
on a monitor. The recognition rates of facial expression were calculated without using the
first 20 frames of each expression just after the instruction was displayed, because of the
time lag between the instruction and the exhibition of the facial expression.

Figure 2 shows some successful estimation results of facial poses and expressions in
Test 1. Table 1 shows the average facial expression recognition rates of the nine and

4Video sequences showing the results in Test 1 and 2 are available from http://www.hci.iis.u-tokyo.ac.jp/
kumano/papers/BMVC2008/.



Ground truth: Neutral Angry Happy SurpriseSad

Head pose Interest points (small green points)

Figure 2: Some estimation results of facial poses and expressions in Test 1: The facial
expression category in the upper part of each image denotes the recognized one.

Methods IA Av Gr Total Frontal Horizontal Vertical
±20 ±40 ±20

Kumano et al. [8] 79.3 95.2 91.6 79.3 51.0
Intensity Adjustment

√
88.3 95.5 94.0 86.6 77.3

Average face shape
√ √

90.4 96.4 94.1 85.2 85.7
Proposed method

√ √ √
91.7 96.3 95.1 87.3 88.3

IA: Intensity adjustment, Av: The use of Average face shape model,
Gr: Head pose estimation with gradient method.

Table 1: Comparison of average recognition rates (%) of facial expressions in Test 1
between the work in [8] and the proposed method.

Methods σx σy σθx σθy σθz σs

[pixel] [degree] (no unit)
Kumano et al. [8] 1.6×101 1.7×101 9.1 8.3 9.9×10−1 1.4×10−2

Intensity Adjustment 1.1×101 1.4×101 7.4 6.3 8.6×10−1 1.5×10−2

Average face shape 9.2 7.5 3.8 4.9 6.2×10−1 1.6×10−2

Proposed method 6.8 3.9 2.0 3.5 4.1×10−1 1.1×10−2

Table 2: S.D. of each head pose component in a frontal-face video sequence from Test 1.

four tests for horizontal and vertical head orientations, respectively. The average rate
in the range of ±40 degree yaw angles and ±20 degree pitch angles exceeded 90(%);
the recognition rate decreased as the head rotation angle increased. The proposed method
outperformed the three other methods. The intensity adjustment and the use of the average
shape mainly increased the recognition rate with vertical head rotation, while the gradient
method enhanced the performance in almost all head directions. These results suggest
that the gradient-based head pose estimation effectively improves the stochastic search.
The effect of the deterministic search can also be seen in Table 2, which lists the standard
deviations of each head pose component in a frontal-face video sequence from Test 1. In
this case, small standard deviations mean that head pose estimation is stable. Our method
demonstrates the most stable estimation.

4.2 Test with free head rotations (Test 2)

In Test 2, the subject freely demonstrated five facial expressions one by one while rotating
the head. Key frames of the video sequence, and the estimated results of facial expres-



(a) Input video sequence (from upper left to lower right, frame number 1, 80, 130, 180, 200, 250,
373, 400, 450, 510).
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(c) Estimation results of facial pose (horizontal axis equals to that of (b)).
Figure 3: Key frames on the test video sequence and its estimation results in Test 2.

sion and head rotation angles in each frame are shown in Fig.3. The ground truth of the
facial expression at every frame was labeled by the subject. Figure 3 shows that facial
expressions were recognized correctly in almost all frames even though the head orienta-
tion varied significantly. We consider the reason for the few mistakes at the end of angry
and sad expressions is that we have only the intensity models for the fully exposed facial
expressions.

5 Summary and future work

The method proposed in this paper combines stochastic and deterministic search meth-
ods for estimating facial pose and expression. The distinct advantage of our method is
to efficiently achieve the robust and accurate estimation, despite the use of the simple
face model, the variable-intensity template, which can be prepared very easily. In our
experiment, five facial expression categories were recognized with overall accuracy of
91.7% for horizontal and vertical facial orientations in the range of ±40 degrees and ±20
degrees, respectively, from the frontal view.

A key topic in future research is learning more about what is happening when facial
expressions change. First, the most significant challenge is to recognize subtle sponta-
neous facial expressions. To this end, we would like to apply unsupervised learning with
an incremental clustering technique, and to estimate the strength of facial expressions
from changes in interest point intensity by referring to optical flow estimation. Second,
we would like to introduce the dynamics of facial expressions. Third is a more advanced
interest point extraction method. Adding or relocating interest points after observing tar-
get expressions is likely to improve the recognition performance.
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