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Abstract

We propose a simple approach to semantic image segmentation. Our
system scores low-level patches according to their class relevance, propa-
gates these posterior probabilities to pixels and uses low-level segmentation
to guide the semantic segmentation. The two main contributions of this pa-
per are as follows. First, for the patch scoring, we describeeach patch with
a high-level descriptor based on the Fisher kernel and use a set of linear
classifiers. While the Fisher kernel methodology was shown to lead to high
accuracy for image classification, it has not been applied tothe segmentation
problem. Second, we use global image classifiers to take intoaccount the
context of the objects to be segmented. If an image as a whole is unlikely to
contain an object class, then the corresponding class is notconsidered in the
segmentation pipeline. This increases the classification accuracy and reduces
the computational cost. We will show that despite its apparent simplicity, this
system provides above state-of-the-art performance on thePASCAL VOC
2007 dataset and state-of-the-art performance on the MSRC 21 dataset.

1 Introduction

We are interested in the problem of semantic segmentation,i.e. assigning each pixel in an
image to one of several semantic classes. This is a supervised learning problem in contrast
to “classical” unsupervised segmentation which groups pixels into homogeneous regions
based on low-level features such as the color or texture. Note that object localization
is a particular instance of the semantic segmentation problem where the two classes are
foreground and background.

One of the first approaches to simultaneous object recognition and localization is [11].
Images patches are extracted and matched to a set of codewords learned during a training
phase. Each activated codeword then votes for possible positions of the object center.

Several authors have proposed to combine low-level segmentation with high-level
representations. [2] computes a pixel probability map using a fragment-based approach
and a multi-scale segmentation. The pixel labeling takes into account the fact that pixels
within homogeneous regions are likely to be segmented together. [14] and [21] perform
respectively normalized cuts and mean-shift segmentationand compute bags-of-keypoints
at the region level. [3] uses Latent Dirichlet Allocation (LDA) at the region level to
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Figure 1: Proposed system overview.

perform segmentation and classification and enforce the pixels within a homogeneous
region to share the same latent topic.

It is also possible to rely on low-level cues to improve the semantic segmentation
without the need to perform explicit low-level segmentation. The different cues are gen-
erally incorporated in a random field model, such as a Markov random field (MRF). As
local interactions are insufficient to generate satisfyingresults, global supervision is in-
corporated in the MRF. In the LOCUS algorithm [19] this takesthe form of prototypical
class mask which can undergo deformation. In the OBJ CUT algorithm [9] and in [17], it
takes the form of a latent model.

While the MRF is generative in nature, the conditional random field (CRF) models
directly the conditional probability of labels given images. [6] incorporates region and
global label features to model shape and context. [10] proposed a two-layer hierarchical
CRF which encodes both short- and long-range interactions.Textonboost [15] is a dis-
criminative model which is able to merge appearance, shape and context information. [20]
proposed the layout consistent random field, an enhanced version of the CRF which can
deal explicitly with partial occlusion. [18] addresses thecase of partially labeled images.

Our system bears some similarity with those of [2, 14, 21, 3] as we use low-level
segmentation to guide the semantic segmentation.

In a nutshell, given an image the proposed approach works as follows (c.f. figure
1). First, patches are detected and low-level descriptors are computed for each patch.
Given a low-level descriptor and a generative model, each patch is described by a high-
level representation. These high-level patch descriptorsare scored with respect to each
class and the patch scores are propagated to the pixels, (i.e. one pixel probability map is
computed per class). Finally, low-level segmentation is performed and a voting is done at
the region level (i.e. one label is assigned to each region).

This is similar to the approach which consists in aggregating patch-level represen-
tations at the region level and then scoring the region-level representations as done in
[14, 21, 3]. However, we believe that using the intermediateclass probability map as in
[2] leads to a more general framework as one can easily extendit to use a MRF or a CRF
to enforce local consistency instead of low-level segmentation.

The two main contributions of this paper are as follows:

• Instead of using the traditional bag-of-words, we propose to use the Fisher vector



[7] as high-level representation of our patches at step 3. The Fisher kernel was
successfully applied to image classification [13] and we will show that it leads to
superior performance with respect to the bag-of-words for the segmentation prob-
lem.

• We refine the previous system by introducing a fast rejectionstep at the image level
(shown in red on figure 1): if the probability that the image contains an instance of
a given class is low, the given class is not considered in steps 4 to 6 of the algorithm.
This is a simple and very general approach to use the object context and to enforce
the global consistency of the labeling. It significantly speeds up the segmentation
while improving the accuracy. Also we will show that by focusing only on those
images which are likely to contain the objects of interest, we can learn a more
accurate patch classifier.

In section 2, we present in more detail the proposed system, emphasizing the main
novelties: the Fisher kernel representation and the use of aglobal rejection mechanism to
take into account the context. In section 3, we show experimental results on the PASCAL
VOC 2007 database and the MSRC 21 dataset before drawing conclusions.

2 Proposed Approach

We now describe in more detail the different steps of the proposed algorithm. Note that
we will not elaborate on the first two components of our systemas it can accommodate
virtually any patch detector and low-level descriptor.

2.1 High-level Patch Description

In the image classification literature, the traditional approach to transform low-level fea-
tures into high-level representations is the bag-of-visual-words (BOV) [16, 4]. The BOV
is based on an intermediate representation, the visual vocabulary. In the case of a genera-
tive approach, the visual vocabulary is a probability density function (pdf) – denotedp –
which models the emission of the low-level descriptors in the image. We model the visual
vocabulary with a Gaussian mixture model (GMM) where each Gaussian corresponds to
a visual word. Letλ be the set of parameters ofp. λ = {wi,µi,Σi, i = 1...N} wherewi,
µi andΣi denote respectively the weight, mean vector and covariancematrix of Gaussian
i and whereN denotes the number of Gaussians. Letpi be the componenti of the GMM
so that we havep(x) = ∑N

i=1wi pi(x). Finally, let γi(xt) be the probability that the low-
level descriptorxt is assigned to Gaussiani. This quantity can be computed using Bayes
formula:

γi(xt) =
wi pi(xt)

∑N
j=1 w j p j(xt)

. (1)

In the bag-of-words representation, the low-level descriptor xt is transformed into the
high-level descriptorft as follows: ft = [γ1(xt),γ2(xt), . . . ,γN(xt)].

We propose as an alternative to the bag-of-words at the patch-level the Fisher rep-
resentation. The Fisher vector describes in which direction the parameters of the model
should be modified to best fit the data. In this case, the high-level descriptorft is given
by ft = ∇λ logp(xt |λ ). We follow [13] and consider only the gradient with respect to the



mean and standard deviation as it was shown that the gradientwith respect to the mix-
ture weights does not contain significant information. In the following, the superscriptd
denotes thed-th dimension of a vector. We have the following formulas forthe partial
derivatives:

∂ logp(xt |λ )

∂ µd
i

= γt(i)

[
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−
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σd
i

]

. (3)

The Fisher gradient vector is just the concatenation of these partial derivatives. These
vectors are subsequently whitened using the normalizationtechnique described in [13].
While both the bag-of-words and Fisher representations arevery high dimensional, they
are also very sparse as only a very small number of componentsi (typically < 5) have a
non-negligible valueγi(xt) for a givent. This makes the storage and processing of these
high-level patch representations manageable. Note that the typical image-level BOV or
Fisher representations are simply the average of these patch representations.

2.2 Patch scoring

These high-level descriptors are subsequently scored according to their class relevance.
Any discriminative classifier may be used and we chose SparseLogistic Regression (SLR)
[8]. The relevance offt with respect to classc is:

p(c| ft) =
1

1+exp(−(w′
c ft + bc))

, (4)

wherewc andbc are respectively the learned separating hyperplane and offset for classc.
One of the advantages of SLR is thatwc is typically very sparse which means that SLR
performs simultaneous classification and feature selection. This speeds-up the compu-
tation of p(c| ft ). Note that, instead of learning each patch classifier independently, one
could have learned them jointly using for instance Sparse Multinomial Logistic Regres-
sion (SMLR) [8].

In the following, we assume that the location of the objects in the training set if pro-
vided. The location may be a bounding box, a more complex polygon or a pixel mask
(in the following, we will use the generic term “mask”). For each image and each class,
we assume that there is an object mask (which can be empty) which will be referred to
as positive mask and its complementary which will be referred to as negative mask. If
several instances of an object are present in the image the mask refers to their union. The
discriminative classifier can be learned at different levels:

• Patch level: we use as positive (resp. negative) samples the high-leveldescriptors
corresponding to the patches within (or significantly overlapping with) the positive
(resp. negative) masks of this class. As the number of training samples can be very
large (several millions), we use a sub-sample of the whole training set.

• Mask level: we use as samples the averages of the high-level vectors over the masks.
The main advantage of this approach compared to the previousone is the smaller
number of training samples (3 orders magnitude less in our experiments if we were



to use all the patch-level representations) and thus the reduced computational cost
at training time. The downside is the decrease in classifier accuracy.

2.3 Pixel scoring

We compute the class posteriors at the pixel level as a weighted average of the patch
posteriorsp(c| ft). For a pixelz and a classc we get:

p(c|z) =
∑T

t=1 p(c| ft )ωt,z

∑T
t=1 ωt,z

. (5)

The weightsωt,z are given by the Gaussian KernelN (z|mt ,Ct). mt is the geometrical
center of patcht andCt a 2× 2 isotropic covariance matrix with values(αst )

2 on the
diagonal wherest is the size of patcht andα is a parameter (equal to 0.6 in the exper-
iments). The isotropic covariance assumption correspondsto round patches. We thus
obtain one probability map per class.

2.4 Region labeling

As labeling each pixel individually would lead to poor performance, we combine the
probability maps with low level segmentation. Each image issegmented in a set of ho-
mogeneous regions according to some low-level features. Class probabilities are aver-
aged over each region and each regionR as a whole is assigned the most likely label:
c∗(R = argmaxc ∑ z ∈ Rp(c|z) We also include a rejection threshold and assign an “un-
known” label to regions with low probabilities.

For the low-level mean-shift segmentation, we used the EdgeDetection and Image
Segmentation (EDISON) System [1]. The 5 dimensional pixel representations contain
the Lab information and the pixel coordinates. The parameters of the segmentation are
chosen so that we mostly over-segment the objects. The reason is that it is more penalizing
to have two objects ending up in the same region than a single object being split in several
regions. Connected regions with similar labels can be subsequently merged.

2.5 Global classification

Taking into account the context of an object generally improves the categorization perfor-
mance. It was even shown at [5] on the PASCAL VOC 2007 databasethat state-of-the-art
approaches to object categorization actually seem to use more the appearance of the con-
text than the object appearance itself.

We thus propose the following approach to improve the segmentation accuracy. We
train for each category a set of classifiers – one per class – atthe image level. The global
classifiers may be similar to the classifiers used at the patchlevel (e.g. in our case both
patch and image classifiers are based on the Fisher representation). While this is not a
requirement, it can reduce the computational cost. We thus get for each image the class
posterior probabilities. If the score of a class is above a given threshold, then one com-
putes the patch score and probability maps for that class andthe corresponding probability
map is used for the region labeling. If the score of a class is below the threshold, then this
class is not considered in the remainder of the processing pipeline.

This simple modification offers the following advantages:



• It increases the segmentation accuracy by considering the objects context. Indeed,
if we do not use this filter, each region is classified individually which may result
in incorrect region labeling, especially in the case of small regions.

• It significantly decreases the computational cost as, generally, only few classes pass
the global score test. In our experiments, we set a thresholdvalue of 0.5 on the
posterior class probabilities. as a trade off between recall and precision. On the
average, 1.4 classes pass the test per image on the PASCAL VOC2007 dataset.
This value is comparable to the average number of classes perimage, as estimated
on the trainval set (approximately 1.46).

• Weakly labeled data,i.e. images where the labels are assigned to the whole image,
is easier and less costly to collect than strongly labeled data, i.e. images where the
objects have been segmented. While training the patch classifiers requires strongly
labeled data, training the global image classifier only requires weakly labeled data.
Hence, our algorithm can make efficient use of weakly labeledimages.

The main drawback of this rejection mechanism is that, if an object appears in an
unusual context (e.g. a cow in an urban setting), the global classifier might prevent the
segmentation stage to discover the object.

We can also use this fast rejection to improve the quality of the patch classifier. As the
only images which pass the global rejection test are those which are likely to contain the
object, we can train the patch classifier to segment specifically an object from its usual
background/context. When training the classifier at the patch level, we use as negative
samples all the patches which significantly overlap with negative masks located in images
which have a high posterior probability (most of which should be images containing the
considered object class). When training the classifier at the mask level, we use as nega-
tive samples all the “ negative” masks which are in images which have a high posterior
probability.

3 Experimental Results

We first describe our experimental setup. We then report the results of our evaluations
on two publicly available datasets: PASCAL VOC 2007 and MSRC21. Figure 2 shows
example segmentations for both databases.

3.1 Experimental setup

Our system extracts patches on grids at multiple scales and use SIFT-like features [12]
as well as simple color features. The dimensionality of these features is subsequently
reduced to 50. For the high-level patch representations, weused respectively a visual
vocabulary of 1,024 Gaussians for the BOV and 64 Gaussians for Fisher.

As for the image-level rejection mechanism, we used the Fisher representation and
the SLR classifier.



Brookes INRIA best MPI best TKK UoCTTI
8.5 / 5.6 23.5 / 5.0 27.8 / 8.6 30.4 / 7.4 21.2 / 5.5

Table 1: Results of the main competitors (pixel / union measures) on the PASCAL VOC
2007 segmentation challenge.

BOV Fisher
Patch Mask Patch Mask

no GR 30.4 / 11.6 17.0 / 10.3 39.5 / 15.0 27.7 / 15.9
GR1 36.0 / 19.3 16.3 / 11.9 38.7 / 21.0 26.5 / 18.8
GR2 39.8 / 24.2 21.4 / 15.9 39.4 / 25.8 36.6 / 24.0

Table 2: Results (pixel / union measures) for the systems based on the BOV and Fisher
representations. We consider the cases where the patch classifiers are learned at the patch
and mask level. We also consider the cases where we do not use global rejection (no GR),
where we use global rejection (GR1) and in the case where we use the global rejection
and learn the patch classifiers on the non-rejected images (GR2).

3.2 PASCAL VOC 2007

We first report results on the Pascal 2007 segmentation dataset [5]. This dataset contains
422 training images and 210 test images. During the 2007 evaluation campaign, only
one system entered the challenge, Brookes. However, several systems which took part
in the detection challenge were also automatically scored on the segmentation challenge.
For the detection challenge, 5,011 training images were available for training. In our
experiments, we used this enlarged dataset to train our segmenter. Hence, we have an
unfair advantage with respect to Brookes.

The measure of accuracy which was used during the competition is the “pixel mea-
sure“ which is the number of true positives divided by the number of ground truth posi-
tives. It was later found to reflect only imperfectly the segmentation accuracy as it does
not take into account false positives. Therefore, we also report results using the so called
“union” or “intersection/union” measure which is the number of true positives divided by
the number of ground truth positives plus false positives1. It should be underlined that
this measure was not what the competition was being assessed on and so the participants
were not necessarily optimizing for that measure. Table 1 summarizes the results (in per-
centages) of the competitors in the challenge. It is clear from the differences in ranking
that the pixel and union measures are significantly different.

Table 2 reports results for our system with different settings: without global rejection
(no GR), with global rejection (GR1) and with global rejection and a patch classifier
learned only using these images which pass the fast rejection step (GR2) (c.f. section
2.5). We also report results when the classifiers are learnedat the patch and mask level
(c.f. section 2.2). We can see that Fisher outperforms BOV systematically on the union
measure and almost always on the pixel measure. especially when the patch classifiers are
learned at the mask level. We recall that learning at the masklevel is clearly advantageous
from a computational standpoint. We note that in all cases, the fast rejection improves

1The ”unofficial” results with this new measure can be found at:
https://www.comp.leeds.ac.uk/me/VOC/voc2007prelimresults/segunion.html



Figure 2: Sample segmentation results for the VOC07 and MSRC21 databases.
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[15] 63 35 19 92 15 86 54 19 62 7 58
[21] 71 38 23 88 23 88 33 34 43 32 62
[17] 89 33 19 78 34 89 46 49 54 31 64

Our best 66 59 28 85 19 68 59 47 35 9 65

Table 3: Per-class and average segmentation accuracy on theMSRC 21 dataset.

the classification accuracy and that learning the patch classifier only on the non-rejected
images brings an additional improvement. The proposed system is above the state-of-
the-art, both on the pixel (39.8 vs 30.4) and union (25.8 vs 8.6) measures. For this case,
overall 73.5% pixels were correctly labelled.

As for the computational cost, the low-level segmentation clearly dominates. On a
2.4 GHz OpteronTMmachine the low-level segmentation takes approximately 30s per
image (using the implementation of mean shift provided at [1]) while the remainder of the
processing (patch extraction, computation of Fisher representations, global image scoring,
patch scoring, pixel scoring and region labeling) takes less than 1 s.

3.3 MSRC 21

We now report results on the Microsoft Research Cambridge database (MSRC 21). It
contains 591 color images of 21 object classes such as building, grass, tree, cow, sheep,



etc. Several papers report results on this dataset with similar training / test conditions
including [15, 21, 18]. We use the same protocol as [18],i.e. the training set contains
276 training images picked randomly and the test set the remaining 315 test images.As
the training and test splits are not exactly the same across the different papers, we should
exercise caution when drawing conclusions. The segmentation accuracy is reported in
terms of pixel classification accuracy for each classes. Theoverall pixelwise segmentation
accuracy is 77.1%. Due to space constraints, we report only our best results in Table 3.
This is the system using Fisher representation and patch-classifiers learned at the patch
level. However, this does not include the global rejection step as it actually decreased
slightly the performance on this dataset (approximately 62%). We believe that this is due
to the lack of per-class training material to train a good image classifier. Note that our
results are comparable to the state-of-the-art although our system is much simpler than
those of [15, 21, 18].

4 Conclusion

We used in this paper a simple framework to semantic segmentation. Our system scores
low-level patches according to their class relevance, propagates these posterior probabil-
ities to pixels and uses low-level segmentation to guide thesemantic segmentation. Our
first contribution was to use the Fisher kernel [7] to derive high-level descriptors to com-
pute the patch level class-relevance. While the Fisher kernel had already been shown to
lead to high accuracy for image classification [13], it had not been applied to the segmen-
tation problem. We showed experimentally that it generallyleads to higher performance
compared to the BOV. The second contribution was to use classification at the image level
to take into account the objects context. This step discardsunlikely hypotheses and thus
speeds up computation. We also showed that, when enough training material is avail-
able to train image-level classifiers, this fast rejection increases performance. Overall, it
was shown on the PASCAL VOC 2007 and MSRC 21 datasets that, despite its apparent
simplicity, this system provides state-of-the-art performance.

While we currently guide the semantic segmentation using low-level segmentation,
our system could also be integrated with random field approaches. We are currently in-
vestigating this path.
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