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Abstract

We propose a simple approach to semantic image segmentaban
system scores low-level patches according to their cldesaece, propa-
gates these posterior probabilities to pixels and useddwelsegmentation
to guide the semantic segmentation. The two main contahatof this pa-
per are as follows. First, for the patch scoring, we desceieh patch with
a high-level descriptor based on the Fisher kernel and ust afdinear
classifiers. While the Fisher kernel methodology was shawead to high
accuracy for image classification, it has not been appli¢gdeésegmentation
problem. Second, we use global image classifiers to takeaiotount the
context of the objects to be segmented. If an image as a whaidikely to
contain an object class, then the corresponding class isamstidered in the
segmentation pipeline. This increases the classificationracy and reduces
the computational cost. We will show that despite its appsinplicity, this
system provides above state-of-the-art performance ofPA®CAL VOC
2007 dataset and state-of-the-art performance on the MSR2taset.

1 Introduction

We are interested in the problem of semantic segmentat@massigning each pixel in an
image to one of several semantic classes. This is a supetesing problem in contrast
to “classical” unsupervised segmentation which groupslgiinto homogeneous regions
based on low-level features such as the color or texture.e Nwt object localization
is a particular instance of the semantic segmentation prolbthere the two classes are
foreground and background.

One of the first approaches to simultaneous object recograid localization is [11].
Images patches are extracted and matched to a set of codewarded during a training
phase. Each activated codeword then votes for possiblégusof the object center.

Several authors have proposed to combine low-level segttientwith high-level
representations. [2] computes a pixel probability map gisirfragment-based approach
and a multi-scale segmentation. The pixel labeling tak&sancount the fact that pixels
within homogeneous regions are likely to be segmented bhegef14] and [21] perform
respectively normalized cuts and mean-shift segmentatidcompute bags-of-keypoints
at the region level. [3] uses Latent Dirichlet Allocation[¥B) at the region level to
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Figure 1: Proposed system overview.

perform segmentation and classification and enforce thelpixithin a homogeneous
region to share the same latent topic.

It is also possible to rely on low-level cues to improve thenaatic segmentation
without the need to perform explicit low-level segmentatidhe different cues are gen-
erally incorporated in a random field model, such as a Markomom field (MRF). As
local interactions are insufficient to generate satisfyiegults, global supervision is in-
corporated in the MRF. In the LOCUS algorithm [19] this takies form of prototypical
class mask which can undergo deformation. In the OBJ CUTriggo [9] and in [17], it
takes the form of a latent model.

While the MRF is generative in nature, the conditional randeeld (CRF) models
directly the conditional probability of labels given image[6] incorporates region and
global label features to model shape and context. [10] pega two-layer hierarchical
CRF which encodes both short- and long-range interactidastonboost [15] is a dis-
criminative model which is able to merge appearance, shaghe@ntext information. [20]
proposed the layout consistent random field, an enhancewwesf the CRF which can
deal explicitly with partial occlusion. [18] addresses tase of partially labeled images.

Our system bears some similarity with those of [2, 14, 21, Sjv@ use low-level
segmentation to guide the semantic segmentation.

In a nutshell, given an image the proposed approach workslesvE (c.f. figure
1). First, patches are detected and low-level descript@samputed for each patch.
Given a low-level descriptor and a generative model, eatthpa described by a high-
level representation. These high-level patch descrigicgsscored with respect to each
class and the patch scores are propagated to the pikelgrie pixel probability map is
computed per class). Finally, low-level segmentation isqumed and a voting is done at
the region leveli(e. one label is assigned to each region).

This is similar to the approach which consists in aggregagiatch-level represen-
tations at the region level and then scoring the regiontex@resentations as done in
[14, 21, 3]. However, we believe that using the intermediddss probability map as in
[2] leads to a more general framework as one can easily extémdse a MRF or a CRF
to enforce local consistency instead of low-level segntenrta

The two main contributions of this paper are as follows:

e Instead of using the traditional bag-of-words, we propasese the Fisher vector



[7] as high-level representation of our patches at step 3e Hisher kernel was
successfully applied to image classification [13] and we stibw that it leads to
superior performance with respect to the bag-of-wordsHerdegmentation prob-
lem.

o We refine the previous system by introducing a fast rejecttep at the image level
(shown in red on figure 1): if the probability that the imag@&@oins an instance of
a given class is low, the given class is not considered irstép 6 of the algorithm.
This is a simple and very general approach to use the objatéxband to enforce
the global consistency of the labeling. It significantly sge up the segmentation
while improving the accuracy. Also we will show that by foougonly on those
images which are likely to contain the objects of interest, @an learn a more
accurate patch classifier.

In section 2, we present in more detail the proposed systemphasizing the main
novelties: the Fisher kernel representation and the usg ozl rejection mechanism to
take into account the context. In section 3, we show experiateesults on the PASCAL
VOC 2007 database and the MSRC 21 dataset before drawinfusms.

2 Proposed Approach

We now describe in more detail the different steps of the pseg algorithm. Note that
we will not elaborate on the first two components of our syséenit can accommodate
virtually any patch detector and low-level descriptor.

2.1 High-level Patch Description

In the image classification literature, the traditional mggeh to transform low-level fea-
tures into high-level representations is the bag-of-Visu@ds (BOV) [16, 4]. The BOV
is based on an intermediate representation, the visuabutey. In the case of a genera-
tive approach, the visual vocabulary is a probability dgrfsinction (pdf) — denoteg —
which models the emission of the low-level descriptors mithage. We model the visual
vocabulary with a Gaussian mixture model (GMM) where each$sS&n corresponds to
a visual word. LetA be the set of parameters pf A = {wi, 14,%;,i = 1...N} wherew;,
Ui andZ; denote respectively the weight, mean vector and covariaratex of Gaussian
i and whereN denotes the number of Gaussians. pebe the componeritof the GMM
so that we havep(x) = TN, wipi(x). Finally, lety(x) be the probability that the low-
level descriptor; is assigned to GaussianThis quantity can be computed using Bayes
formula: %)
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In the bag-of-words representation, the low-level desorig; is transformed into the
high-level descriptof; as follows: fi = [yi(%), V2(%), ..., W(X%)]-

We propose as an alternative to the bag-of-words at the peteth the Fisher rep-
resentation. The Fisher vector describes in which diredtie parameters of the model
should be modified to best fit the data. In this case, the reghatidescriptoif; is given
by fi = 0, logp(x|A). We follow [13] and consider only the gradient with respecttte
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mean and standard deviation as it was shown that the gragigntespect to the mix-
ture weights does not contain significant information. la tbllowing, the superscript
denotes thal-th dimension of a vector. We have the following formulas thee partial
derivatives:

dlogp(x[A) [y
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The Fisher gradient vector is just the concatenation ofetmestial derivatives. These
vectors are subsequently whitened using the normalizatiomnique described in [13].
While both the bag-of-words and Fisher representationsanghigh dimensional, they
are also very sparse as only a very small number of componémsically < 5) have a
non-negligible values(x ) for a givent. This makes the storage and processing of these
high-level patch representations manageable. Note teatyfiical image-level BOV or
Fisher representations are simply the average of thesh pgtcesentations.

2.2 Patch scoring

These high-level descriptors are subsequently scoreddiogoto their class relevance.
Any discriminative classifier may be used and we chose Sphagistic Regression (SLR)
[8]. The relevance of; with respect to classis:

1

PlE) = T exp(— (Wi + b)) X

wherew, andb. are respectively the learned separating hyperplane asdtdéir class.
One of the advantages of SLR is thvat is typically very sparse which means that SLR
performs simultaneous classification and feature selectithis speeds-up the compu-
tation of p(c|fi). Note that, instead of learning each patch classifier indégetly, one
could have learned them jointly using for instance Sparséivimial Logistic Regres-
sion (SMLR) [8].

In the following, we assume that the location of the objectthe training set if pro-
vided. The location may be a bounding box, a more complexgmosiyor a pixel mask
(in the following, we will use the generic term “mask”). Faxah image and each class,
we assume that there is an object mask (which can be emptghwiill be referred to
as positive mask and its complementary which will be refiétreas negative mask. If
several instances of an object are present in the image thk mefers to their union. The
discriminative classifier can be learned at different lsvel

e Patch level: we use as positive (resp. negative) samples the high-tiasariptors
corresponding to the patches within (or significantly oapding with) the positive
(resp. negative) masks of this class. As the number of trgisamples can be very
large (several millions), we use a sub-sample of the whaleitrg set.

e Masklevel: we use as samples the averages of the high-level vectarthewmasks.
The main advantage of this approach compared to the previoeiss the smaller
number of training samples (3 orders magnitude less in opeements if we were



to use all the patch-level representations) and thus thecesticomputational cost
at training time. The downside is the decrease in classifieur@acy.

2.3 Pixel scoring

We compute the class posteriors at the pixel level as a wagiighterage of the patch
posteriorsp(c| f;). For a pixelzand a class we get:

_ Zthl p(c] ft)(q.z.

5
Y1z ®)

p(cl2)
The weightsa ; are given by the Gaussian Kernel' (zm;,C). m is the geometrical
center of patcht andC; a 2x 2 isotropic covariance matrix with valuésrs;)? on the
diagonal wheres is the size of patch anda is a parameter (equal to 0.6 in the exper-
iments). The isotropic covariance assumption correspémasund patches. We thus
obtain one probability map per class.

2.4 Region labeling

As labeling each pixel individually would lead to poor pearfance, we combine the
probability maps with low level segmentation. Each imagsegmented in a set of ho-
mogeneous regions according to some low-level featureassQbrobabilities are aver-
aged over each region and each regidras a whole is assigned the most likely label:
c'(# = argmax Y z<€ Zp(c|z) We also include a rejection threshold and assign an “un-
known” label to regions with low probabilities.

For the low-level mean-shift segmentation, we used the H2fgtection and Image
Segmentation (EDISON) System [1]. The 5 dimensional pirgkesentations contain
the Lab information and the pixel coordinates. The parameters efsdgmentation are
chosen so that we mostly over-segmentthe objects. Therréasat it is more penalizing
to have two objects ending up in the same region than a sitjgetbeing split in several
regions. Connected regions with similar labels can be syjumsgly merged.

2.5 Global classification

Taking into account the context of an object generally inmpsathe categorization perfor-
mance. It was even shown at [5] on the PASCAL VOC 2007 datahasstate-of-the-art
approaches to object categorization actually seem to use the appearance of the con-
text than the object appearance itself.

We thus propose the following approach to improve the segatien accuracy. We
train for each category a set of classifiers — one per classheamage level. The global
classifiers may be similar to the classifiers used at the pateh (e.g. in our case both
patch and image classifiers are based on the Fisher repaisait While this is not a
requirement, it can reduce the computational cost. We tletisog each image the class
posterior probabilities. If the score of a class is abovevemgithreshold, then one com-
putes the patch score and probability maps for that clasgh@tbrresponding probability
map is used for the region labeling. If the score of a clasglewwthe threshold, then this
class is not considered in the remainder of the processpwjipe.

This simple modification offers the following advantages:



e It increases the segmentation accuracy by consideringtjeets context. Indeed,
if we do not use this filter, each region is classified indiatiywhich may result
in incorrect region labeling, especially in the case of smegjions.

o It significantly decreases the computational cost as, gdlgeonly few classes pass
the global score test. In our experiments, we set a threskalee of Q5 on the
posterior class probabilities. as a trade off between reral precision. On the
average, 1.4 classes pass the test per image on the PASCAL200TC dataset.
This value is comparable to the average number of classémpge, as estimated
on the trainval set (approximately 1.46).

o Weakly labeled data,e. images where the labels are assigned to the whole image,
is easier and less costly to collect than strongly label¢d,da images where the
objects have been segmented. While training the patchifidssequires strongly
labeled data, training the global image classifier only nexguveakly labeled data.
Hence, our algorithm can make efficient use of weakly labatexyes.

The main drawback of this rejection mechanism is that, if bject appears in an
unusual contextgg. a cow in an urban setting), the global classifier might prévea
segmentation stage to discover the object.

We can also use this fast rejection to improve the qualithefdgatch classifier. As the
only images which pass the global rejection test are thosehadre likely to contain the
object, we can train the patch classifier to segment spetjfiaa object from its usual
background/context. When training the classifier at thelp#&vel, we use as negative
samples all the patches which significantly overlap withatieg masks located in images
which have a high posterior probability (most of which shbhe images containing the
considered object class). When training the classifieranthsk level, we use as nega-
tive samples all the “ negative” masks which are in imagesctviiave a high posterior
probability.

3 Experimental Results

We first describe our experimental setup. We then reportékalts of our evaluations
on two publicly available datasets: PASCAL VOC 2007 and M@RCFigure 2 shows
example segmentations for both databases.

3.1 Experimental setup

Our system extracts patches on grids at multiple scales sa®&UFT-like features [12]
as well as simple color features. The dimensionality of éhfesitures is subsequently
reduced to 50. For the high-level patch representationsyseel respectively a visual
vocabulary of 1024 Gaussians for the BOV and 64 Gaussians for Fisher.

As for the image-level rejection mechanism, we used thedfistpresentation and
the SLR classifier.



INRIA best
23.5/5.0

MPI best
27.8/8.6

TKK
30.4/7.4

UoCTTI
21.2/5.5

Brookes
8.5/5.6

Table 1: Results of the main competitors (pixel / union measuon the PASCAL VOC
2007 segmentation challenge.

BOV Fisher
Patch Mask Patch Mask
noGR || 30.4/11.6| 17.0/10.3| 39.5/15.0| 27.7/15.9
GR1 | 36.0/19.3| 16.3/11.9| 38.7/21.0| 26.5/18.8
GR2 || 39.8/24.2| 21.4/15.9| 39.4/25.8| 36.6/24.0

Table 2: Results (pixel / union measures) for the systemedan the BOV and Fisher
representations. We consider the cases where the patsifielasare learned at the patch
and mask level. We also consider the cases where we do nolalse gejection (no GR),
where we use global rejection (GR1) and in the case where wehasglobal rejection
and learn the patch classifiers on the non-rejected imageg)(G

3.2 PASCAL VOC 2007

We first report results on the Pascal 2007 segmentationetdtds This dataset contains
422 training images and 210 test images. During the 200uatrah campaign, only
one system entered the challenge, Brookes. However, $esystams which took part
in the detection challenge were also automatically scoretthe segmentation challenge.
For the detection challenge, 5,011 training images werdadpla for training. In our
experiments, we used this enlarged dataset to train ouresgigm Hence, we have an
unfair advantage with respect to Brookes.

The measure of accuracy which was used during the compeigtithe “pixel mea-
sure” which is the number of true positives divided by the bemof ground truth posi-
tives. It was later found to reflect only imperfectly the segration accuracy as it does
not take into account false positives. Therefore, we alponteresults using the so called
“union” or “intersection/union” measure which is the numbétrue positives divided by
the number of ground truth positives plus false positie#t should be underlined that
this measure was not what the competition was being assessed on and so the participants
were not necessarily optimizing for that measure. Table 1 summarizes the results (in per-
centages) of the competitors in the challenge. It is cleanfthe differences in ranking
that the pixel and union measures are significantly differen

Table 2 reports results for our system with different sgiinwithout global rejection
(no GR), with global rejection (GR1) and with global rejectiand a patch classifier
learned only using these images which pass the fast rejesteap (GR2) (c.f. section
2.5). We also report results when the classifiers are leaaihélte patch and mask level
(c.f. section 2.2). We can see that Fisher outperforms BQ¥esyatically on the union
measure and almost always on the pixel measure. especiadiy the patch classifiers are
learned at the mask level. We recall that learning at the neagkis clearly advantageous
from a computational standpoint. We note that in all cades fast rejection improves

1The "unofficial” results with this new measure can be found at
https://www.comp.leeds.ac.uk/me/VOC/voc2007 prelsntts/segunion.html



Figure 2: Sample segmentation results for the VOCO07 and M3R@atabases.
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[17] 80(33(19|78|34|89|46|49|54| 31|64
Ourbest| 66| 59| 28| 85| 19|68 |59|47|35| 9 | 65

Table 3: Per-class and average segmentation accuracy MSR€E 21 dataset.

the classification accuracy and that learning the patclsifiasonly on the non-rejected
images brings an additional improvement. The proposedsyss above the state-of-
the-art, both on the pixel (39.8 vs 30.4) and union (25.8 8} Bieasures. For this case,
overall 73.5% pixels were correctly labelled.

As for the computational cost, the low-level segmentatil@aidy dominates. On a
2.4 GHz OpterohMmachine the low-level segmentation takes approximatelg p@r
image (using the implementation of mean shift provided Btfhile the remainder of the
processing (patch extraction, computation of Fisher regmeations, global image scoring,
patch scoring, pixel scoring and region labeling) takes than 1 s.

3.3 MSRC21

We now report results on the Microsoft Research Cambridgebdse (MSRC 21). It
contains 591 color images of 21 object classes such as hgjldrass, tree, cow, sheep,



etc. Several papers report results on this dataset withasitnaining / test conditions
including [15, 21, 18]. We use the same protocol as [18], the training set contains
276 training images picked randomly and the test set theirenga315 test imagesAs
the training and test splits are not exactly the same across the different papers, we should
exercise caution when drawing conclusions. The segmentation accuracy is reported in
terms of pixel classification accuracy for each classes.olvkeall pixelwise segmentation
accuracy is 77.1%. Due to space constraints, we report anmypest results in Table 3.
This is the system using Fisher representation and pasdsifiers learned at the patch
level. However, this does not include the global rejecti@psas it actually decreased
slightly the performance on this dataset (approximateBph2/NVe believe that this is due
to the lack of per-class training material to train a gooddmalassifier. Note that our
results are comparable to the state-of-the-art althouglsystem is much simpler than
those of [15, 21, 18].

4 Conclusion

We used in this paper a simple framework to semantic segri@mtaDur system scores
low-level patches according to their class relevance, ggapes these posterior probabil-
ities to pixels and uses low-level segmentation to guidestdmantic segmentation. Our
first contribution was to use the Fisher kernel [7] to deriighklevel descriptors to com-
pute the patch level class-relevance. While the Fisherdtdrad already been shown to
lead to high accuracy for image classification [13], it hatlreen applied to the segmen-
tation problem. We showed experimentally that it genenglfds to higher performance
compared to the BOV. The second contribution was to useifitzgion at the image level
to take into account the objects context. This step disaamtikely hypotheses and thus
speeds up computation. We also showed that, when enougimtgranaterial is avail-
able to train image-level classifiers, this fast rejectiocréases performance. Overall, it
was shown on the PASCAL VOC 2007 and MSRC 21 datasets thaiitelés apparent
simplicity, this system provides state-of-the-art pemfance.

While we currently guide the semantic segmentation usimglével segmentation,
our system could also be integrated with random field apgresicWe are currently in-
vestigating this path.
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