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Abstract

The Tower of Knowledge architecture integrates probatifieory and logic
for making decisions. The scheme models the causal depeieddretween
the functionalities of objects and their descriptions, #meh employs the
maximum expected utility principle, which combines prottigbtheory and
logic, to select the most appropriate label for the objettc&most existing
scene interpretation methods rely heavily on training da&adevelop in this
paper a recursive version of ToK to avoid such dependencguiRize ToK
learns the prior distributions iteratively from the deoiss of labelling com-
ponents made in the last iteration, partly by functionaditof components,
and partly by the already learnt prior distributions in poexs iterations. To
validate our method in the domain of 3D outdoor scene in&gbion, we
compare ToK against a state-of-the-art method, Expandzdesian Net-
works (EBN), for labelling components of buildings. Expeeintal results
then show that the labelling accuracy of ToK is superior tat thf EBN.
Also, these results reveal that recursive ToK improves toeliacy of ToK
for labelling 3D components in the worst case when lackingteaining data.

1 Introduction

For several years, probabilistic and logic based appraaeieee used in dichotomy.
Recently, it has been recognised that a combination of tapgeaches may prove very
useful in computer vision [19]. It is also emerging thatistatal (and by extension prob-
abilistic) reasoning on objects may best be inferred viaasin relationships between
the objects, and that dynamic scenes with observed retatind actions in temporal se-
guences may help in cognitive tasks [4, 15].

Scene interpretation is a fundamental problem in comptiséorvwith aim to recog-
nise objects by relating a set of primitives to a collectiétabels or semantic represen-
tations. Based on probabilistic graphical models, a systiad Description Logic (DL)
was proposed for scene interpretation by Neumann et al [Adfther algorithm is the
informative local features approach based on decisi@stf@]. Hudelot et al [10] intro-
duced a support vector machine as another method for lepimiscene interpretation.
A large body of research focuses on neural networks or aé¢aneural networks for
scene interpretation [17]. A representative work usingralenetworks is evolutionary

BMVC 2008 doi:10.5244/C.22.63



optimization (ENN) [18]. Recently, a growing trend of scengerpretation has focused
on some graphical probabilistic models such as Bayesiamonks$ algorithms [2, 3,12]
and Markov random fields (MRF) [9, 13]. Kim and Nevatia [12]aestigated expandable
Bayesian networks (EBN) as a method of interpreting 3D dbjdeBN is introduced as a
reasoning tool of interpretation to solve the problem tivatwation of hypotheses based
on evidence is uncertain because the number of images be@ubjisinot fixed and some
modalities may not be always available. However, the acyuoéall the above methods
relies heavily on the availability of enough training exdegpto populate adequately the
feature space. The main motivation of our paper is therefoselving this problem.

Most recently, an architecture, namely the Tower of Knogke(ToK), that combines
logic and probabilities was proposed for scene interpaetdil5, 16]. In this paper, we
extend this scheme into an iterative form to improve its@anfince and enforce its self-
learning capabilities.

2 Brief Overview of the ToK Scheme

Figure 1 shows schematically the ToK architecture. Thikitecture is designed to
label a scene on the basis of answering the question “whadlgih answering the ques-
tions “why” and “how”. In trying to label a component being altony, the following
sequence of logic processing may be envisaged:

“What is this?"- “It is a balcony.”

“Why?"— “Because it is attached to a building and people candin it.”

“How?"— “By offering enough space for a person to stand in bypdbeing attached on a
wall with an opening area to allow people to enter it from théding. ”

“Is it really like that? Let me check.”

Given the above reasoning sequence, the tower of knowlemfygsts of four levels: im-
age level, semantic level, functionality level and degwiplevel. The image level be-
longs to low-level vision. Features extracted from imagedtae units of this level and the
input to the tower of knowledge. Image processing modulekivg at this level process
the components that are input to the next level for labelliffge other three levels belong
to the high level vision. The nouns of the semantic level heentames of the objects, i.e.
labels (e.g. “balcony”,“window”). The remaining two legedre those of the functionali-
ties and the descriptors, which may be seen as the impliit lepresentation of object
models. The verbs of the functionality level are functidties of the objects such as “to
stand in” and “to look out”. A functionality may be fulfilledf the object has certain
characteristics. These are captured at the descripti@h I&xamples of these units are
“having enough space for a person” and “there is an openintp®mvall’. The units in
the description level can interrogate the sensors and thgamto verify that a required
descriptor applies to an object. This way, the vertical @mtions of the scheme encode
implicitly the generic models of objects, seen not in idolator as static entities, but
in the context of what they are used for and what their gersdracacteristics are. These
generic models effectively encode the logic rules of metavkedge that have been learnt
from spatio-temporal activities involving the objects wishwto label. According to this
scheme, an object is assigned a label as follows.

Let us assume that we use maximum a posteriori (MAP) estimati assign labels
to a scene. In the conventional way of doing so, obgdie {a;,a2,...,an} ) will be
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Figure 1: The tower of knowledge for labelling objext The units in this figure stand
for the measurementd;, labelsL , functionalitiesF and descriptor®.

assigned labd} (€ L = {l1,l2,...,Im}) with probability p;;, given by:
pij = p(1jIMi)p(Mi) = p(Mill}) r!pm I13) 1)

whereM; (M; = {m(l), rq(z), e mi(s)}) represents all the measurements we have made on
objecta;, and p(M;) and p(l;) are the prior probability mass functions (pmfs) of mea-
surements and labels, respectively. Let us identify thésunithe functionality level of
Figure 1 byfy (e {f1,f2,..., fp}), and the units at the description level of Figure 1 by
d (€ {d1,d2,...,dq}). Here, we use utility of utility theory to represent theilogonse-
guences inferred by the functionalities of objects andrttiescriptions. We may choose
labell; for objecta; according to thenaximum expected utility principle as follows:

lj, = argmaxz Uik ka| Cil Pij (2)

el &

whereu;y indicates how important is for an object with lalbgdo fulfil functionality fi; v
indicates how important characteristicis for an object to be able to fulfil functionality
fk, andg, is the confidence we have that descrigdoapplies to objecs;.

3 A recursiveversion of ToK

One practical difficulty in applying Equation (2) is that @quires the initial knowl-
edge ofp(n}m\lj) andp(l;). If there are not enough training data, we may apply a recur-
sive version of ToK to deal with the unavailability of enoughining data. First of all, let
us assume that theh observed values of each componefit of the measurements vector
M are represented by a histografh, with a finite number of fixed width bins. Recursive
ToK then provides a simple yet effective way to sequentiafigatep(m(®) |l;) andp(l;),
leading to optimal decisions. Based on Equation (2), at stagpr of the recursive ToK,



the label can be assigned as,
=arg maxz Ujk ZVan rlp (m"1)p" (1)) (3)

Now consider the way of computing(m®|I;) andp(l;) for each step, denoted by
(M (m®|I;) andp(l;). Here, we consider the worst case of lacking training exaspl

which means that there are no training data in the databdmzefbre, at the initial step,
we assume that every label is equally probable a prfi(l;) = p(© (Ix)) for all I; andly
in L). Similarly, for alll; andly in L, we have equal conditional probabilitip€) (m®|1;).

A term called “innovation” is introduced related to a newlgdbdistribution of each
label in the scene at each step. It is common [8] to repreblerihhovation of labell; for
each step as a simple function:

1y,
In(Ij,r):(l—)\)z' U i) (4)

n

where (1" = 1;) will be 1if 1Y =1, and else it will be 0. Parameteris the
total number of components, aid(c [0, 1]) is a memory factor, which is used to control
the impact of pmfs of the previous stepsZl..,r — 1) to the current step. Also, the
innovation of valuen® conditioned orij can be represented as,

zk— ( tvlj(:; Y Ij)

In(m®lj,r) = (1-2) (5)
Y1 0(1, =)
whered(m®, 11~ = 1;) will be 1if 1{/~ = 1; for the specified value of theth mea-
surement, and else it will be 0.
At each step, the innovations can be used in the following equations,
1 _
P80 =1y)
P01 = AP () + (- M) EE (6)
) (r=1) _ .
(r)(m(t)“j) ZAp(rfl)(m(t)Hj)—k( )Zk 18(m", Jk IJ) )

Yko1 ( - 1)—|j)

In Equations (6) and (7), the first term on the right-hand sdesed to avoid the sudden

change of value and thus convergence to a wrong solutionsétend term, innovation,

adapts the new knowledge learnt in the previous steps tepieisific example (scene).
Finally, we havelJ after R iterations as the output of the recursive ToK. Such a

recursive version of the ToK learns prior knowledge adabyifrom the meta-knowledge

it already has, and can endure the situation of lackingitrgidata. The overall algorithm

is summarised in Table 1.

4 Application to labelling 3D models of buildings

In order to verify the effectiveness and robustness of ToKitsrecursive version for
scene interpretation, we exemplify our ideas in the coméxabelling the components



Table 1: Summary of the recursive tower of knowledge

1. (a) Create the histogramsmf!), one per possible label.
(b) Initialize the pmfsp(©® (1}) and p(® (m®|1}) as uniform pmfsj = 0,1,...,M.
2. Repeatfor=1,2,...,R

(@) Repeatfor=1,2,...,n

i. Assign each componenf Iabelljgi“l) by using Equation (3).
(b) Repeatfoj=12,....M

i. Update the prior pmfs of each component by using Equation (6).
ii. Fort=1,2,...,sand for each measurement vad) of all components,
update the prior conditional pmfs using Equation (7).

3. By using Equation (3), assign to componeantabel I}iR) as the output of recursive
ToK,ie{1,2,...,n}.

of 3D models of buildings. The prior probabilities for eagipe of component and the

conditional probabilities of (2)(l;) and p(mim |I})) have been learnt using the e-TRIMS
database [11] and the histograms of the distributions ofsemegnents from manually

annotated training images. We dicuss next how we define thewafu;y, viy andg.

4.1 Meta-knowledge of 3D sceneinterpretation
The specific meaning of the meta-knowledge codes used o8&t given in Figure

2. Assumimg that all effects from a certain cause are eqlikély, we may expressj
andvy as

o o(lj— )
Hik = sh 10l — fm) ®)

~ O(fk—d)
= 1 0(fc — dn) ®)

whered(l; — fy) takes value 1 if label; implies functionality f,; else it takes value 0.
Similarly, 8(fx — d|) takes value 1 if functionalityfy can be fulfilled by descriptiod;

else it takes value 0. Arranging the valuesigf andvy in the form of matrices, we may
write:

0 1/2 0 1/2 O Y2 0 Y20 0 0

15 06 o 0 0 0 1 0 0O

U= v=|0 0 0 0 ¥2 1/2
0 0 1 0 0

o 0 0 o0 1 O 0 0 1 0 O

/2 1/2 0 0 0 0

Finally, we must have a method that will allow the ToK to worlkt the values o€
of equation (2) by interrogating the measurements made @sdbane. In particulag;
can be calculated using the method described in [16].



Label Functionality Description

f, Letpeople walk out d,  The bottom of the component touches the ground

f, Letpeople look out S d, The top of the component touches a flat plane

f3 Let people stand in da Itis tall enough for human size

N fa Letiightin —Bd,  Itis glass-like

f5 Makes buildi I
5 Makes building stable. The width is large enough for human size

There is some opening component next to it
Figure 2: The detailed meta-knowledge of the logic verifarasub-system in the ToK.
The single-headed arrow lines display the relationshimfedfect to cause.

Figure 3: Some original images of a building. There are Sediffit view images for
reconstructing this building.

4.2 Experimental Results

To validate our method, this section describes our experiahe@esults for labelling
components of 3D models with the ToK, its recursive versind another state-of-the-
art version of scene interpretation algorithm, namely exjadle Bayesian networks [12].
In [12], Kim and Nevatia applied EBN to recognise roofs, waltc. leading to the detec-
tion of buildings, but we apply here EBN to recognise buigddmmponents such as doors,
windows etc. Learning qb(n}(t) |lj) andp(l;) is done by using the eTRIMS database [11]
(which consists of more than 200 buildings with over 5000 uadly identified compo-
nents).

Problems of 3D reconstruction do not concern us here sirc&dKl scheme is inde-
pendent of the way the 3D model is reconstructed. We thusrasshat the 3D model of
the building has already been reconstructed by epipolangag estimation [7] to obtain
3D points of the building. Plane estimation [5] was used tatdsh the walls of the
building from the 3D points. In addition, we segmented thecBponents of the objects
manually. Here, 500 components of 5 reconstructed buitd{Bdypes: modern, classical
and traditional) are tested, yet the labelling results d¢f one building will be discussed
in detail, and the overall results for all buildings will beegented in general.

Figure 3 shows three selected images of a building we wisbdonstruct and label.
Its 3D model is displayed in Figure 4.

We first tested the ToK and EBN methods for labelling comptmehthe building in
the case that training data are available. We obtain thédtsasuabelling its components
by EBN and ToK as shown in Figures 5. Notice that both EBN ari{l fimde mistakes of
labelling two windows in the ground floor as doors because éuenan beings may make
such a mistake without previously knowing that they can rebpened. Also, notice
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Figure 4: The 3D model of Figure 3
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Figure 5: The experimental results of labelling the compmbsef the 3D model of Figure
4 using EBN (Figure (a)) and ToK (Figure (b)). The red pand&ésdomponent with the
incorrect label. Window— door means that the window is mislabelled as door.

that, the ToK scheme mislabelled three doors above the talget EBN lebelled them
correctly. This is mainly due to the glass-like appeararfdbese doors, also necessary
for the functionalities of a window to let light in and let gge look through it.

Then, in order to demonstrate the robustness of recursiethe case of lacking
training data, we used both ToK and recursive ToK for lahgltomponents in the worst

case of totally lacking any training data, which Ieadsp(m(t)\lj) andp(lj) of equation
(2) to be uniform distributions. Here, iteration numlbeof recursive ToK was set to 50.
Figure 6 characterises the performance of recursive ToRBoscene interpretation along
with the increased number of iterations when no trainingy@las are provided. Note
that, in this figure, the accuracy of the first iteration cep@nds to the labelling results
of the original ToK without any training data. This figure eals the convergence of the
accuracy to a better percentage after a few iterations andpeed of such convergence
with respect to memory factar when the recursive version of ToK is applied.

Figures 7 and 8 show four more buildings we used in our exparisifor evaluation.
The accuracy of labelling the components of all buildingeejgorted in Table 2, and in
more detail in Table 3. The memory factbrand the iteration number in all experiments
were set to ® and 50, respectively. Notice that without any trainingagd@&BN can not
work at all since the prior probabilities are unknown andrésults are thereby wholly
random, so we do not present the results of EBN without angitigedata. For all these
buildings, the results then clearly demonstrate that Tokka/detter than EBN, and that
recursive ToK can greatly improve the accuracy of ToK for 8Bre interpretation while
the prior training data are not available.
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Figure 6: Performance of recursive ToK, as a function ofiiens.
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Figure 7: (a) The selected original three-view images of édimg chosen from the
eTRIMS database [11]. There are 9 different view imagesdoonstructing the building.
(b) Its 3D reconstructed model.

EBN with training | ToK with training | ToK without | Recursive ToK without
data data training data training data
Building 1 92% 97.6% 91.2% 97.3%
Building 2 91.4% 100% 77.1% 91.4%
Building 3 96.8% 96.8% 87.1% 96.8%
Building 4 100% 100% 95.0% 95.0%
Building 5 100% 100% 100% 100%
All buildings 93.4% 98.0% 90.8% 97.0%

Table 2: Summary of percentage accuracy of the EBN algorithitim training data, the

ToK scheme with and without training data, and recursive SoKeme without training

data for 3D scene interpretation. There are in total 500 amapts of those 5 buildings
for being labelled.

Window(Results)| Door(Results)| Balcony(Results)| Pillar(Results)
Window (Ground Truth)| 375-380-398-394 30-22-6-10 0-1-1-1 0-2-0-0
Door (Ground Truth) 0-21-3-4 42-24-42-41 0-0-0-0 3-0-0-0
Balcony (Ground Truth) 0-0-0-0 0-0-0-0 19-19-19-19 0-0-0-0
Pillar (Ground Truth) 0-0-0-0 0-0-0-0 0-0-0-0 31-31-31-31

Table 3: The overall results of 3D scene interpretation fidoildings using EBN - ToK

without prior training data - ToK - Recursive ToK without gritraining data.




Figure 8: The selected two-view images of another 3 buildlicigpsen from the eTRIMS
database [11] and the IMPACT database [1].

5 Conclusions

In this paper, we proposed, implemented and tested a reeursision of ToK for
scene interpretation. This recursive ToK theoreticallgves on the ideas of ToK and
adaptive algorithms by using the results of each iteratienided by meta-knowledge (the
logic inserted into the computer by humans) and traininglte®f previous iterations, to
learn and update the distributions of measurement valugtdovarious classes and the
prior probability of the various labels for the next itecati One significant advantage of
recursive ToK over most existing methods, such as EBN, isitidnes not lie heavily
on the availability of enough training data to populate theole feature space. It is
also attractive for its self-learning capability by itévaty integrating probabilistic theory
and logic. Experimental results on several 3D building n®daow the superiority of
recursive ToK for solving the problem of lacking traininga#&or 3D scene interpretation.
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