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Abstract

The Tower of Knowledge architecture integrates probability theory and logic
for making decisions. The scheme models the causal dependencies between
the functionalities of objects and their descriptions, andthen employs the
maximum expected utility principle, which combines probability theory and
logic, to select the most appropriate label for the object. Since most existing
scene interpretation methods rely heavily on training data, we develop in this
paper a recursive version of ToK to avoid such dependency. Recursive ToK
learns the prior distributions iteratively from the decisions of labelling com-
ponents made in the last iteration, partly by functionalities of components,
and partly by the already learnt prior distributions in previous iterations. To
validate our method in the domain of 3D outdoor scene interpretation, we
compare ToK against a state-of-the-art method, ExpandableBayesian Net-
works (EBN), for labelling components of buildings. Experimental results
then show that the labelling accuracy of ToK is superior to that of EBN.
Also, these results reveal that recursive ToK improves the accuracy of ToK
for labelling 3D components in the worst case when lacking any training data.

1 Introduction

For several years, probabilistic and logic based approaches were used in dichotomy.
Recently, it has been recognised that a combination of theseapproaches may prove very
useful in computer vision [19]. It is also emerging that statistical (and by extension prob-
abilistic) reasoning on objects may best be inferred via semantic relationships between
the objects, and that dynamic scenes with observed relations and actions in temporal se-
quences may help in cognitive tasks [4,15].

Scene interpretation is a fundamental problem in computer vision with aim to recog-
nise objects by relating a set of primitives to a collection of labels or semantic represen-
tations. Based on probabilistic graphical models, a systemcalled Description Logic (DL)
was proposed for scene interpretation by Neumann et al [14].Another algorithm is the
informative local features approach based on decision-trees [6]. Hudelot et al [10] intro-
duced a support vector machine as another method for learning in scene interpretation.
A large body of research focuses on neural networks or advanced neural networks for
scene interpretation [17]. A representative work using neural networks is evolutionary
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optimization (ENN) [18]. Recently, a growing trend of sceneinterpretation has focused
on some graphical probabilistic models such as Bayesian networks algorithms [2, 3, 12]
and Markov random fields (MRF) [9,13]. Kim and Nevatia [12] investigated expandable
Bayesian networks (EBN) as a method of interpreting 3D objects. EBN is introduced as a
reasoning tool of interpretation to solve the problem that evaluation of hypotheses based
on evidence is uncertain because the number of images being used is not fixed and some
modalities may not be always available. However, the accuracy of all the above methods
relies heavily on the availability of enough training examples to populate adequately the
feature space. The main motivation of our paper is thereforein solving this problem.

Most recently, an architecture, namely the Tower of Knowledge (ToK), that combines
logic and probabilities was proposed for scene interpretation [15, 16]. In this paper, we
extend this scheme into an iterative form to improve its performance and enforce its self-
learning capabilities.

2 Brief Overview of the ToK Scheme

Figure 1 shows schematically the ToK architecture. This architecture is designed to
label a scene on the basis of answering the question “what” through answering the ques-
tions “why” and “how”. In trying to label a component being a balcony, the following
sequence of logic processing may be envisaged:
“What is this?”– “It is a balcony.”
“Why?”– “Because it is attached to a building and people can stand in it.”
“How?”– “By offering enough space for a person to stand in andby being attached on a
wall with an opening area to allow people to enter it from the building. ”
“Is it really like that? Let me check.”
Given the above reasoning sequence, the tower of knowledge consists of four levels: im-
age level, semantic level, functionality level and description level. The image level be-
longs to low-level vision. Features extracted from images are the units of this level and the
input to the tower of knowledge. Image processing modules working at this level process
the components that are input to the next level for labelling. The other three levels belong
to the high level vision. The nouns of the semantic level are the names of the objects, i.e.
labels (e.g. “balcony”,“window”). The remaining two levels are those of the functionali-
ties and the descriptors, which may be seen as the implicit logic representation of object
models. The verbs of the functionality level are functionalities of the objects such as “to
stand in” and “to look out”. A functionality may be fulfilled,if the object has certain
characteristics. These are captured at the description level. Examples of these units are
“having enough space for a person” and “there is an opening onthe wall”. The units in
the description level can interrogate the sensors and the images to verify that a required
descriptor applies to an object. This way, the vertical connections of the scheme encode
implicitly the generic models of objects, seen not in isolation or as static entities, but
in the context of what they are used for and what their genericcharacteristics are. These
generic models effectively encode the logic rules of meta-knowledge that have been learnt
from spatio-temporal activities involving the objects we wish to label. According to this
scheme, an object is assigned a label as follows.

Let us assume that we use maximum a posteriori (MAP) estimation to assign labels
to a scene. In the conventional way of doing so, objectai (∈ {a1,a2, . . . ,an} ) will be
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Figure 1: The tower of knowledge for labelling objectai. The units in this figure stand
for the measurementsMi, labelsL, functionalitiesF and descriptorsD.

assigned labell j (∈ L = {l1, l2, . . . , lM}) with probability pi j, given by:

pi j = p(l j|Mi)p(Mi) = p(Mi|l j)p(l j) =
s

∏
t=1

p(m(t)
i |l j)p(l j) (1)

whereMi (Mi = {m(1)
i ,m(2)

i , . . . ,m(s)
i }) represents all the measurements we have made on

objectai, and p(Mi) and p(l j) are the prior probability mass functions (pmfs) of mea-
surements and labels, respectively. Let us identify the units in the functionality level of
Figure 1 by fk (∈ { f1, f2, . . . , fp}), and the units at the description level of Figure 1 by
dl (∈ {d1,d2, . . . ,dq}). Here, we use utility of utility theory to represent the logic conse-
quences inferred by the functionalities of objects and their descriptions. We may choose
labell ji for objectai according to themaximum expected utility principle as follows:

l ji = argmax
l j∈L

p

∑
k=1

u jk

q

∑
l=1

vklcil pi j (2)

whereu jk indicates how important is for an object with labell j to fulfil functionality fk; vkl

indicates how important characteristicdl is for an object to be able to fulfil functionality
fk, andcil is the confidence we have that descriptordl applies to objectai.

3 A recursive version of ToK

One practical difficulty in applying Equation (2) is that it requires the initial knowl-

edge ofp(m(t)
i |l j) andp(li). If there are not enough training data, we may apply a recur-

sive version of ToK to deal with the unavailability of enoughtraining data. First of all, let
us assume that thetth observed values of each componentm(t) of the measurements vector
M are represented by a histogramh(t), with a finite number of fixed width bins. Recursive
ToK then provides a simple yet effective way to sequentiallyupdatep(m(t)|l j) andp(l j),
leading to optimal decisions. Based on Equation (2), at eachstepr of the recursive ToK,



the label can be assigned as,

l(r)ji
= argmax

l j∈L

p

∑
k=1

u jk

q

∑
l=1

vklcil

s

∏
t=1

p(r)(m(t)
i |l j)p(r)(l j) (3)

Now consider the way of computingp(m(t)|l j) and p(l j) for each stepr, denoted by
p(r)(m(t)|l j) andp(r)(l j). Here, we consider the worst case of lacking training examples,
which means that there are no training data in the database. Therefore, at the initial step,
we assume that every label is equally probable a priori (p(0)(l j) = p(0)(lk)) for all li andlk
in L). Similarly, for all li andlk in L, we have equal conditional probabilitiesp(0)(m(t)|l j).

A term called “innovation” is introduced related to a new global distribution of each
label in the scene at each step. It is common [8] to represent the innovation of labell j for
each stepr as a simple function:

In(l j,r) = (1−λ )
∑n

i=1 δ (l(r−1)
ji

= l j)

n
(4)

whereδ (l(r−1)
ji

= l j) will be 1 if l(r−1)
ji

= l j, and else it will be 0. Parametern is the
total number of components, andλ (∈ [0,1]) is a memory factor, which is used to control
the impact of pmfs of the previous steps (1,2, . . . ,r−1) to the current stepr. Also, the
innovation of valuem(t) conditioned onl j can be represented as,

In(m(t)|l j,r) = (1−λ )
∑n

k=1 δ (m(t), l(r−1)
jk

= l j)

∑n
k=1 δ (l(r−1)

jk
= l j)

(5)

whereδ (m(t), l(r−1)
jk

= l j) will be 1 if l(r−1)
jk

= l j for the specified value of thet-th mea-
surement, and else it will be 0.

At each stepr, the innovations can be used in the following equations,

p(r)(l j) = λ p(r−1)(l j)+(1−λ )
∑n

i=1 δ (l(r−1)
ji

= l j)

n
(6)

p(r)(m(t)|l j) = λ p(r−1)(m(t)|l j)+(1−λ )
∑n

k=1 δ (m(t), l(r−1)
jk

= l j)

∑n
k=1 δ (l(r−1)

jk
= l j)

(7)

In Equations (6) and (7), the first term on the right-hand sideis used to avoid the sudden
change of value and thus convergence to a wrong solution. Thesecond term, innovation,
adapts the new knowledge learnt in the previous steps to thisspecific example (scene).

Finally, we havel(R)
ji

after R iterations as the output of the recursive ToK. Such a
recursive version of the ToK learns prior knowledge adaptively from the meta-knowledge
it already has, and can endure the situation of lacking training data. The overall algorithm
is summarised in Table 1.

4 Application to labelling 3D models of buildings

In order to verify the effectiveness and robustness of ToK and its recursive version for
scene interpretation, we exemplify our ideas in the contextof labelling the components



Table 1: Summary of the recursive tower of knowledge

1. (a) Create the histograms ofm(t), one per possible label.

(b) Initialize the pmfsp(0)(l j) andp(0)(m(t)|l j) as uniform pmfs,j = 0,1, . . . ,M.

2. Repeat forr = 1,2, . . . ,R

(a) Repeat fori = 1,2, . . . ,n

i. Assign each componentai labell(r−1)
ji

by using Equation (3).

(b) Repeat forj = 1,2, . . . ,M

i. Update the prior pmfs of each component by using Equation (6).

ii. For t = 1,2, . . . ,s and for each measurement valuem(t) of all components,
update the prior conditional pmfs using Equation (7).

3. By using Equation (3), assign to componentai label l(R)
ji

as the output of recursive
ToK, i ∈ {1,2, . . . ,n}.

of 3D models of buildings. The prior probabilities for each type of component and the

conditional probabilities of (2) (p(l j) andp(m(t)
i |l j)) have been learnt using the e-TRIMS

database [11] and the histograms of the distributions of measurements from manually
annotated training images. We dicuss next how we define the values ofu jk, vkl andcil .

4.1 Meta-knowledge of 3D scene interpretation

The specific meaning of the meta-knowledge codes used in Section 2 is given in Figure
2. Assumimg that all effects from a certain cause are equallylikely, we may expressu jk

andvkl as

u jk =
δ (l j → fk)

∑p
m=1 δ (l j → fm)

(8)

vkl =
δ ( fk → dl)

∑q
n=1 δ ( fk → dn)

(9)

whereδ (l j → fk) takes value 1 if labell j implies functionality fk; else it takes value 0.
Similarly, δ ( fk → dl) takes value 1 if functionalityfk can be fulfilled by descriptiondl ;
else it takes value 0. Arranging the values ofu jk andvkl in the form of matrices, we may
write:

U =









0 1/2 0 1/2 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1









V =













1/2 0 1/2 0 0 0
0 0 0 1 0 0
0 0 0 0 1/2 1/2
0 0 0 1 0 0

1/2 1/2 0 0 0 0













Finally, we must have a method that will allow the ToK to work out the values ofcil

of equation (2) by interrogating the measurements made on the scene. In particular,cil

can be calculated using the method described in [16].
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Figure 2: The detailed meta-knowledge of the logic verification sub-system in the ToK.
The single-headed arrow lines display the relationship from effect to cause.

Figure 3: Some original images of a building. There are 5 different view images for
reconstructing this building.

4.2 Experimental Results

To validate our method, this section describes our experimental results for labelling
components of 3D models with the ToK, its recursive version and another state-of-the-
art version of scene interpretation algorithm, namely expandable Bayesian networks [12].
In [12], Kim and Nevatia applied EBN to recognise roofs, walls etc. leading to the detec-
tion of buildings, but we apply here EBN to recognise building components such as doors,

windows etc. Learning ofp(m(t)
i |l j) andp(l j) is done by using the eTRIMS database [11]

(which consists of more than 200 buildings with over 5000 manually identified compo-
nents).

Problems of 3D reconstruction do not concern us here since the ToK scheme is inde-
pendent of the way the 3D model is reconstructed. We thus assume that the 3D model of
the building has already been reconstructed by epipolar geometry estimation [7] to obtain
3D points of the building. Plane estimation [5] was used to establish the walls of the
building from the 3D points. In addition, we segmented the 3Dcomponents of the objects
manually. Here, 500 components of 5 reconstructed buildings (3 types: modern, classical
and traditional) are tested, yet the labelling results of only one building will be discussed
in detail, and the overall results for all buildings will be presented in general.

Figure 3 shows three selected images of a building we wish to reconstruct and label.
Its 3D model is displayed in Figure 4.

We first tested the ToK and EBN methods for labelling components of the building in
the case that training data are available. We obtain the results of labelling its components
by EBN and ToK as shown in Figures 5. Notice that both EBN and ToK made mistakes of
labelling two windows in the ground floor as doors because even human beings may make
such a mistake without previously knowing that they can not be opened. Also, notice



Figure 4: The 3D model of Figure 3

(a) (b)

Figure 5: The experimental results of labelling the components of the 3D model of Figure
4 using EBN (Figure (a)) and ToK (Figure (b)). The red pane is the component with the
incorrect label. Window→ door means that the window is mislabelled as door.

that, the ToK scheme mislabelled three doors above the balcony, yet EBN lebelled them
correctly. This is mainly due to the glass-like appearance of these doors, also necessary
for the functionalities of a window to let light in and let people look through it.

Then, in order to demonstrate the robustness of recursive ToK in the case of lacking
training data, we used both ToK and recursive ToK for labelling components in the worst

case of totally lacking any training data, which leads top(m(t)
i |l j) and p(l j) of equation

(2) to be uniform distributions. Here, iteration numberR of recursive ToK was set to 50.
Figure 6 characterises the performance of recursive ToK for3D scene interpretation along
with the increased number of iterations when no training examples are provided. Note
that, in this figure, the accuracy of the first iteration corresponds to the labelling results
of the original ToK without any training data. This figure reveals the convergence of the
accuracy to a better percentage after a few iterations and the speed of such convergence
with respect to memory factorλ when the recursive version of ToK is applied.

Figures 7 and 8 show four more buildings we used in our experiments for evaluation.
The accuracy of labelling the components of all buildings isreported in Table 2, and in
more detail in Table 3. The memory factorλ and the iteration number in all experiments
were set to 0.9 and 50, respectively. Notice that without any training data, EBN can not
work at all since the prior probabilities are unknown and itsresults are thereby wholly
random, so we do not present the results of EBN without any training data. For all these
buildings, the results then clearly demonstrate that ToK works better than EBN, and that
recursive ToK can greatly improve the accuracy of ToK for 3D scene interpretation while
the prior training data are not available.
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Figure 6: Performance of recursive ToK, as a function of iterations.
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Figure 7: (a) The selected original three-view images of a building chosen from the
eTRIMS database [11]. There are 9 different view images for reconstructing the building.
(b) Its 3D reconstructed model.

EBN with training ToK with training ToK without Recursive ToK without

data data training data training data

Building 1 92% 97.6% 91.2% 97.3%
Building 2 91.4% 100% 77.1% 91.4%
Building 3 96.8% 96.8% 87.1% 96.8%
Building 4 100% 100% 95.0% 95.0%
Building 5 100% 100% 100% 100%

All buildings 93.4% 98.0% 90.8% 97.0%

Table 2: Summary of percentage accuracy of the EBN algorithmwith training data, the
ToK scheme with and without training data, and recursive ToKscheme without training
data for 3D scene interpretation. There are in total 500 components of those 5 buildings
for being labelled.

Window(Results) Door(Results) Balcony(Results) Pillar(Results)

Window (Ground Truth) 375-380-398-394 30-22-6-10 0-1-1-1 0-2-0-0

Door (Ground Truth) 0-21-3-4 42-24-42-41 0-0-0-0 3-0-0-0

Balcony (Ground Truth) 0-0-0-0 0-0-0-0 19-19-19-19 0-0-0-0

Pillar (Ground Truth) 0-0-0-0 0-0-0-0 0-0-0-0 31-31-31-31

Table 3: The overall results of 3D scene interpretation for all buildings using EBN - ToK
without prior training data - ToK - Recursive ToK without prior training data.



Figure 8: The selected two-view images of another 3 buildings chosen from the eTRIMS
database [11] and the IMPACT database [1].

5 Conclusions

In this paper, we proposed, implemented and tested a recursive version of ToK for
scene interpretation. This recursive ToK theoretically draws on the ideas of ToK and
adaptive algorithms by using the results of each iteration,decided by meta-knowledge (the
logic inserted into the computer by humans) and training results of previous iterations, to
learn and update the distributions of measurement values for the various classes and the
prior probability of the various labels for the next iteration. One significant advantage of
recursive ToK over most existing methods, such as EBN, is that it does not lie heavily
on the availability of enough training data to populate the whole feature space. It is
also attractive for its self-learning capability by iteratively integrating probabilistic theory
and logic. Experimental results on several 3D building models show the superiority of
recursive ToK for solving the problem of lacking training data for 3D scene interpretation.
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