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Abstract

This paper introduces a method which provides robust tracking results and
accurately segmented object boundaries in short computation time. The first
step of the algorithm is to apply a novel edge detector on efficiently calculated
color probability maps in an object-specific Fisher color space. The proposed
edge detector exploits context information by finding the maximally stable
boundaries of connected regions in threshold results outperforming purely
local edge detectors. Finally, based on the estimated edge maps a probabilis-
tic particle filtering framework hypothesizes rigid transformations for initial-
izing an active contour model to provide accurate object segmentations in
each frame. Experimental evaluations show that robust tracking results with
accurate segmentations are obtained on challenging data sets.

1 Introduction
Visual tracking is a topic of high interest in computer vision and has versatile applications,
as e. g. in video surveillance, motion analysis or gesture recognition. Although tracking
algorithms have to cope with major complications as e. g. clutter, occlusions, background
distraction, illumination changes or changes in appearance and shape of the object, many
robust tracking frameworks have been proposed.

In general, current tracking algorithms can be divided into deterministic and proba-
bilistic approaches. Deterministic approaches as e. g. the mean shift tracker [4] or the
covariance tracker [15] are calculated in an efficient manner, but they are sensitive to clut-
ter and occlusions. Recently, probabilistic approaches based on various extensions of the
classical particle filtering framework [9] were quite popular. Particle filtering maintains
multiple hypotheses of the current object state and therefore provides impressively robust
tracking results.

Most of the currently available tracking frameworks only provide a simple bounding
box as tracking result assuming that the object-to-be-tracked has approximately a rect-
angular shape. Recently, similar as in the field of object detection, different authors,
as e. g. Ren and Malik [17], Angelopoulous et al. [1], Kohli and Torr [11] or Moreno-
Noguer et al. [13] focused on providing accurate object segmentations instead of simple
bounding boxes for tracking.

The main issue of most of these methods is the computational complexity required
to be able to perform subsequent figure-ground segmentations. For example, Moreno-
Noguer et al. [13] integrated multiple cues into a particle filtering framework and showed
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Figure 1: Illustration of tracking framework. After initialization three iteratively repeated
steps enable robust tracking results and accurately segmented region boundaries.

impressive results on challenging data sets. But their algorithm requires approximately a
minute per frame for tracking.

In this paper we propose a novel tracking framework, which enables robust tracking
results and additionally provides accurate object segmentations per frame. Furthermore,
all required steps have a low computational complexity allowing to use the tracker in
real-time applications. The main idea of our tracking framework is similar to interactive
segmentation algorithms, as e. g. in the seminal work of Boykov and Jolly [2], where a
user has to initialize the segmentation method by drawing free-form-lines into the image.
Instead of using an user provided initialization we use the segmentation of the object in
the previous frame t-1 to perform the figure-ground segmentation in frame t. If the
figure-ground segmentation has low computational complexity such an approach can be
used for real-time tracking applications. In such a way we do not need to model any
dynamics of the scene and no a-priori knowledge of the object is required.

The main contributions of this paper are: we first propose to use a modified version
of an efficient color segmentation algorithm for tracking purposes. Second, we show
how an object-specific color space is elegantly integrated into segmentation. Third, we
introduce a novel edge detector exploiting context information which outperforms purely
local detectors. Finally, we demonstrate that robust tracking results are obtained providing
accurate object segmentations per frame.

The outline of the paper is as follows. Section 2 introduces the method which is based
on fitting active contours to efficiently calculated color probability edge maps. Section 3
shows an experimental evaluation on challenging data sets which demonstrate that ro-
bust tracking results with accurately segmented object boundaries are obtained. Finally
Section 4 draws some conclusions and gives an outlook to future work.



2 Tracking framework
Our method requires a segmented object-of-interest as initialization. Tracking then mainly
consists of three subsequently repeated steps, as it is illustrated in Figure 1. First, for a
new frame of the input sequence a color probability map is calculated, which measures the
similarity of the local neighborhood of every pixel to the current object-of-interest color
distribution in an object-specific Fisher color space (Section 2.1). Second, a novel edge
detector is applied to the color similarity maps which exploits context information and
outperforms purely local detectors (Section 2.2). Third, a probabilistic particle filtering
framework is used to hypothesize rigid transformations based on the edge maps. Because
the particle filtering step only considers rigid transformations, an active contour model is
finally applied to be able to adapt to non-rigid deformations (Section 2.3).

2.1 Calculation of color probability map
The first step of the tracking framework is to calculate a color probability map p(O|x)
for the currently analyzed frame t, which measures the similarity between the color ap-
pearance of the object-to-be-tracked O and the local neighborhood of every pixel x. The
resulting map p(O|x) can be visualized as shown in Figure 2(c), where bright values
indicate areas with high color similarity.

The values p(O|x) are calculated by a sliding window approach, where subsequently
a model of the color appearance of the local neighborhood – defined by a window of
size L× L – is compared to the appearance of the object O. Since we focus on a real-
time capable method the calculation of these color probability maps has to be as ef-
ficient as possible. We propose to exploit the properties of a modified version of a
color segmentation algorithm introduced by Donoser and Bischof [7] for tracking pur-
poses. They demonstrated that state-of-the-art unsupervised color segmentation results
can be achieved within short computation time by combining differently focused sub-
segmentations. In their sub-segmentation step an efficient algorithm for calculating local
color probability values is introduced. We adapt their method by converting pixel values
into an object-specific color space especially suited for tracking applications and by using
the Kullback-Leibler divergence as a better suited distance measure.

We start by modeling the color appearance of a segmented object O by a Gaussian
Mixture Model Θrgb in the RGB color space, defined by

p(x,Θrgb) =
C

∑
c=1

ωc N(µc,Σc), (1)

which consists of a weighted linear combination of C Gaussian distributions N(µc,Σc),
where µc is the 3× 1 mean vector and Σc is the 3× 3 covariance matrix of the c-th
component. The weights ωc describe the proportion of the c-th component and fulfill
∑

C
c=1 ωc = 1. The parameters of the model are estimated as maximum likelihood pa-

rameters using the Expectation–Maximization (EM) algorithm [5] initialized by a Mean
Shift process in the manner of Cho et al. [3], which automatically chooses the number of
components.

In order to better discriminate the color distribution of the object from its background
we transform each component of the GMM to a component-specific color space. The
idea of transforming into an object-dependent color space for tracking applications was



proposed by Moreno-Noguer et al. [13], who showed that the best feature space is the
one that maximizes the distance between the object and its surrounding background color
values. They used a single transformation to a 2D Fisher space, whereas we extend this
idea by introducing an optimal space for every component of the GMM.

After fitting the GMM Θrgb to the object O we are able to assign every pixel of the
object to one of the estimated components, providing C point sets Pc. Furthermore, for
every point set Pc we can also define a set Nc of neighborhood pixels ni

c fulfilling

∀ni
c ∈ Nc → d

(
ni

c,Pc
)
≤ δ ∧ ni

c /∈ Pc, (2)

where d
(
ni

c,Pc
)

denotes the Euclidean distance of the pixel ni
c to the nearest pixel in the

set Pc and δ is a maximum neighborhood distance parameter.
Based on these point sets we calculate an optimal color space for each component

that discriminates the color values of the pixels in Pc from its corresponding non-object
neighbors Nc by non-parametric discriminant analysis (NDA) [8], which is an extension of
the classical linear discriminant analysis (LDA). In general, LDA finds the hyperplane in
the feature space, which best separates the two sets Pc and Nc by maximizing the between
class scatter matrix Sb and minimizing the within class scatter matrix Sw. In the classical
LDA setup, the rank of the between class scatter matrix Sb is only one for our two class
problem and the projected data points would lie on a line. To overcome this limitation
we use, similar to Moreno-Noguer et al. [13], the non-parametric version of LDA denoted
as NDA [8], where the calculation of the between class scatter matrix Sb is extended by
including local information based on a K-nearest neighbor rule which makes the matrix a
full-rank one. Thus, NDA provides a projection of a pixel prgb in the three-dimensional
RGB space to a sample p f is in the two-dimensional Fisher space by a 2×3 matrix W by

p f is = W prgb. (3)

In our case, NDA provides a component-dependent 2×3 mapping W c for each of the
C components of the GMM Θrgb. Each component in the three-dimensional RGB space
is then transformed into its corresponding Fisher space by multiplying the means and the
covariances by

µ
f is
c = W c µ

rgb
c and Σ

f is
c = W c Σ

rgb
c W c

T , (4)

and the GMM Θ f is in the Fisher space is defined by

p(x,Θ f is) =
C

∑
c=1

ωc N
(

W c µ
rgb
c ,W c Σ

rgb
c W c

T
)

=
C

∑
c=1

ωc N
(
µ

f is
c ,Σ f is

c
)
. (5)

This GMM Θ f is is then compared to the color appearance of the local neighborhoods
of each pixel by a sliding window approach for calculating the required color probability
map p(O|x). First, a single Gaussian N(µ

rgb
w ,Σrgb

w ) is fitted to the color values of a win-
dow of size L×L located on the currently investigated pixel, assuming locally uniform
distribution. Then this Gaussian is transformed to the estimated C Fisher spaces of the
GMM Θ f is by applying the corresponding transformation matrices W c based on Equa-
tion 4 resulting in C Gaussians N(µ

f is
wc ,Σ

f is
wc ). Finally, in such a way a color likelihood

value p(O|x) is calculated between the GMM Θ f is and the single Gaussian by

p(O|x) = exp

(
−

C

∑
c=1

ωc β
(
N(µ

f is
wc ,Σ

f is
wc ),N(µ

f is
c ,Σ f is

c )
))

(6)



(a) Object to track (b) RGB modeling (c) Fisher modeling

Figure 2: Illustration of differences in color probability maps p(O|x) of the object O (a)
by modeling in RGB color space (b) and in Fisher color space (c).

where β (N1,N2) denotes the Kullback-Leibler (KL) divergence between two single Gaus-
sians N1 and N2 which has an analytical solution defined by

β (N1,N2) =
1
2

(
log

|Σ2|
|Σ1|

)
+ tr

(
Σ
−1
2 Σ1

)
− d +(µ1−µ2)

T
Σ
−1
2 (µ1−µ2) , (7)

where d is the dimensionality of the feature space used, i. e. two in our case and tr(. . .)
denotes the trace of the matrix. Please note, that this is just an approximation since the
KL divergence is in general not linearly separable. By sliding the window of size L×L all
over the image, the KL divergence is calculated for every pixel describing the similarity
between the color appearance of the local neighborhood and the object model. Figure 2
shows examples of probability maps projected to a gray scale range. Please note, how the
usage of the Fisher space improves the discrimination of the object from its background.

To be able to calculate the mean and covariance matrix of the RGB color values of a
local neighborhood in the most efficient way, we use the integral image concept, which
e. g. has been applied for fast calculation of histograms by Porikli [16], for covariance ma-
trix computation by Tuzel et al. [18] or for Bhattacharyya distance calculation by Donoser
and Bischof [7]. As shown in [7] nine different integral images are required for efficient
calculation of Gaussian distributions. Please note, that the necessary transformation into
the corresponding Fisher spaces can be elegantly integrated just by multiplication of the
means and covariances with the corresponding NDA matrices W c.

2.2 Maximally Stable Boundaries
The second step of our framework consists of applying an edge detector to the color sim-
ilarity map p(O|x) estimated by the algorithm presented in Section 2.1. Standard edge
detection algorithms as the Canny detector just look for local discontinuities in image
brightness, while recent work focused on integrating context, mid- and high-level infor-
mation to improve edge detection results as done by Dollar et al. [6] or Zheng et al. [19].
These frameworks provide excellent results but their main drawback is the required com-
putation time in the range of 12 seconds [6] and 90 seconds [19] which makes them not
feasible for fast tracking applications.

To be able to use an edge detection result in a real-time capable tracking framework
its calculation has to be fast, but nevertheless at least contextual information should be
integrated to be able to outperform purely local detectors. Therefore, we introduce a
novel edge detection framework which outperforms local edge detectors as e. g. the Canny
detector and furthermore is calculated in a very efficient manner.



The underlying idea of the method is to detect edges by finding boundary chains
of connected regions within binary threshold results, which are stable over a sequence
of thresholds. This idea is quite similar to the detection of Maximally Stable Extremal
Regions (MSERs) as proposed by Matas et al. [12]. We detect edges by analyzing a data
structure named the component tree. The component tree is a rooted, connected tree and
can be built for any image Iin with pixel values coming from a totally ordered set. Each
node of the tree represents a single extremal region, i. e. a connected region extracted from
a binary threshold image Ig

bin = Iin ≥ g, where g denotes a threshold value. The edges of
the tree are defined by the inclusion relationship between the extremal regions found in
results for subsequently increased threshold values g. By moving in the component tree
upwards the size of the extremal regions increases and the root of the tree contains a
region which includes all pixels of the input image Iin.

Then for every region of the tree a stability criterion is analyzed which measures if
parts of the region boundary remain more or less the same over several levels of the
component tree. We define the stability value Ψ(Rg

i ) of a region Rg
i by comparing its

neighboring regions Rg−∆

j and Rg+∆

k , where Rg−∆

j and Rg+∆

k are the extremal regions that
are obtained by moving upwards respectively downwards in the component tree from
region Rg

i until a region with gray value g−∆ respectively g + ∆ is found. Let C j and
Ck be the corresponding region boundaries. As a first step we calculate the distance
transformation DTj for the binary map containing the boundary pixels of C j. This distance
transformation DTj allows to find partial matches between the boundaries C j and Ck by
finding connected chains C k ⊂ Ck fulfilling

C k ⊂ Ck → DTj
(
C k
)
≤Φ, (8)

where Φ is a maximum boundary distance parameter. Then, the stability value Ψ(Rg
i ) is

set to the average chamfer distance Dcham of the matched boundary pixels C k by

Ψ(Rg
i ) =

1
N

N

∑
n=1

DTj
(
C k
)
, (9)

where N is the number of matched pixel. In such a way we get a similarity measure Ψ(Rg
i )

and matched connected boundary chains for every comparison.
After calculation of the stability values for the entire component tree, we detect the

most stable ones within the tree and return the corresponding boundary chains as detection
result. Therefore, we denote the resulting binary edge map as Maximally Stable Boundary
(MSB) detection result.

Please note, that MSB results are quite different from simply returning the boundaries
of an MSER detection result. First, since we find connected sub-chains that are similar,
the returned MSBs need not to be closed. Further, since we really analyze if local parts of
the boundary are stable and not only the region sizes, the selected most stable regions can
differ significantly. Nevertheless, MSBs possess the same properties as MSERs. They are
detected at every scale and are invariant to affine intensity changes. Furthermore, algo-
rithms have been proposed which allow to detect the component tree in linear time [14]. In
our framework, the proposed edge detection algorithm is only applied on the color prob-
ability maps p(O|x), estimated with the algorithm described in Section 2.1, for tracking
purposes. This application enables to further decrease the computation time by focusing
on the upper threshold levels, i. e. on regions with similar color appearance.



(a) Input Image (b) Canny edge result (c) MSB result

Figure 3: Edge detection results of post-processed Canny edge detector and Maximally
Stable Boundary (MSB) detector.

Figure 3 shows the difference between a post-processed canny edge result and our
MSB result applied to the color probability map shown in Figure 2(c). Please note,
that due to the previously mentioned constraints the MSB detection exclusively finds the
boundary chain of interest.

2.3 Particle filtering and active contour fit
The final step of our tracking algorithm is to obtain the current object segmentation based
on the calculated color edges. For that purpose we first estimate a transformation of
the object O between the previous and the current frame. We use a probabilistic particle
filtering framework [9] for hypothesizing rigid transformations of the object between sub-
sequent frames. At each frame a set of P particles st

i with corresponding weights π t
i and

i = 1 . . .P approximates the posterior probability function p(xt |z1:t), where x is the state
vector and z are the observations during tracking.

We use a five-dimensional state space representing similarity transformations with
translation, scaling and rotation. Resampling and particle propagation follow the standard
particle filter procedure [9]. The weight update, i. e. the analysis of the current observa-
tion, is based on analyzing the Chamfer distance of the estimated transformed shape to the
edge map calculated by the algorithm described in Section 2.2. Finally, the particle set
{st

i,π
t
i } approximates the posteriori probability function p(xt |z1:t), estimating the most

likely transformation between the frames.
Because particle filtering only considers rigid transformations we finally apply an ac-

tive contour model [10] to the edge map. Due to the reason that fitting an active contour
model on edge maps strongly depends on the initialization, we use the estimated trans-
formed shape returned by particle filtering as initialization. Because the initialization is
on average close to the desired output only few iterations are required to get a parametric
model as the final result.

3 Experiments
The main focus of the experimental evaluation lies on demonstrating the high accuracy
of our method on a simple hand tracking sequence and its robustness on a challenging
sports video sequence. In both experiments we perform a direct comparison to a state-of-



Figure 4: Tracking hands through a video sequence by the proposed method. Accurate
segmentations of the hand are provided in each frame.

the-art tracker: the covariance tracker proposed by Porikli et al. [15] which has proven to
provide impressively robust tracking results. In the original paper of Porikli et al. [15] the
current tracking location is set to the location of maximum similarity. To further increase
its robustness we embedded the tracker in a particle filtering framework [9], which also
allows to dynamically adjust the scale of the object to be tracked. We demonstrate that
our framework robustly tracks complex objects without any model of dynamics or a-
priori knowledge of the object outperforming the covariance tracker in terms of tracking
accuracy and robustness for fast changing object shapes.

The presented results were achieved with a non-optimized Matlab implementation,
enabling a tracking speed of one frame per second for the 640× 480 sequences. There-
fore, an efficient implementation in C/C++ will allow to use our framework for real-time
tracking applications. In all experiments the parameters were fixed to δ = 10, L = 9,
∆ = 10, Φ = 5 and P = 100.

In a first experiment we applied the proposed method for tracking hands, as e. g. re-
quired in applications like gesture recognition or human-computer interaction (HCI). Fig-
ure 4 shows selected frames of the tracking sequence where the hand segmentation results
are highlighted by a yellow boundary. As can be seen our tracker provides accurate seg-
mentations of the object in every frame. For comparison, the covariance tracker output
is also able to track the hand robustly, but lacks concerning the accuracy of the provided
bounding boxes.

As second tracking example Figure 5 shows the tracking and segmentation results
of a challenging ski sequence, which includes lightning changes, appearance changes
and occlusions. Despite these difficulties our framework provides robust results, with
accurate boundary segmentations. In comparison as can be seen in Figure 6 the covariance
tracker fails to track the fast changing object in this sequence. The severe changes of the
object appearance and shape are correctly handled by our tracker because of the repeated
figure/ground segmentation in every frame which allows to adapt to new shapes.



(a) (b)

Figure 5: Tracking sports events – (a) shows cropped segmentation bounding boxes and
(b) selected frames including segmentation results.

Figure 6: Result of particle filter embedded covariance tracker. The provided bounding
boxes are not accurate and the track is lost after 100 frames.

4 Conclusion and outlook
This paper introduced a novel real-time capable tracking framework, based on the idea of
repeatedly performing figure/ground segmentations on the subsequent frames by fitting
an active contour on efficiently calculated color similarity edge maps. We presented the
Maximally Stable Boundary detector which outperforms purely local edge detectors by
integrating context information. Experimental evaluations proved that robust tracking
results in addition to accurately segmented boundaries are achieved. Future work will
focus on the integration of a fast partial shape matching concept to find the object in
the edge maps, subsequently performing accurate object boundary detection instead of
applying active contours.
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