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Abstract

Triangulation of a 3D point from two or more views can be solved in sev-
eral ways depending on how perturbations in the image coordinates are dealt
with. A common approach is optimal triangulation which minimizes the to-
tal L2 reprojection error in the images, corresponding to finding a maximum
likelihood estimate of the 3D point assuming independent Gaussian noise in
the image spaces. Computational approaches for optimal triangulation have
been published for the stereo case and, recently, also for the three-view case.
In short, they solve an independent optimization problem for each 3D point,
using relatively complex computations such as finding roots of high order
polynomials or matrix decompositions. This paper discuss three-view trian-
gulation and reports the following results: (1) the 3D point can be computed
as multi-linear mapping (tensor) applied on the homogeneous image coordi-
nates, (2) the set of triangulation tensors forms a 7-dimensional space deter-
mined by the camera matrices, (3) given a set of corresponding 3D/2D cali-
bration points, the 3D residual L1 errors can be optimized over the elements
in the 7-dimensional space, (4) using the resulting tensor as initial value, the
error can be further reduced by tuning the tensor in a two-step iterative pro-
cess, (5) the 3D residual L1 error for a set of evaluation points which lie close
to the calibration set is comparable to the three-view optimal method. In
summary, three-view triangulation can be done by first performing an opti-
mization of the triangulation tensor and once this is done, triangulation can
be made with 3D residual error at the same level as the optimal method, but
at a much lower computational cost. This makes the proposed method attrac-
tive for real-time three-view triangulation of large data sets provided that the
necessary calibration process can be performed.

1 Introduction
Triangulation (or reconstruction) of a 3D point from its projection y1,y2 in two images
is a well-explored area in computer vision [3]. An common method is optimal trian-
gulation which minimizes the total L2 reprojection error in the image domain. This is
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done by determining two image points ỹ1, ỹ2 that minimize the total L2 reprojection er-
ror d(ỹ1,y1)2 + d(ỹ2,y2)2, where d is the Euclidean 2D distance measured in the image
space, while at the same time they satisfy the epipolar constraint ỹT

1 Fỹ2 = 0 where F is
the fundamental matrix. A non-iterative computational approach for determining ỹ1, ỹ2 is
given in [5], and a standard method can then be used to compute the 3D point from ỹ1, ỹ2.

Recently, the corresponding problem for three views has been treated in [9] which also
presents a non-iterative method for finding the solution. This approach has a significant
computational cost, e.g., eigenvalue analysis of a 47 × 47 matrix is performed and 128-bit
floating point numerics is required to obtain useful robustness of the result. An alternative
approach is described in [1], which significantly reduces the computational costs.

The methods mentioned above are optimal in the sense that they find a Maximum
Likelihood estimate of the 3D point under the assumption that the image coordinates are
affected by independent Gaussian noise. Although this is a reasonable assumption, they
solve an independent optimization problem for each reconstructed point and no explicit
optimization takes place in the 3D space. In fact, it can be shown that optimal triangula-
tion can produce larger 3D errors than other methods in certain circumstances [5].

An alternative approach to stereo triangulation is presented in [6]. The mapping from
image coordinates to the 3D point is represented as a multi-linear mapping (tensor) on
the homogeneous image coordinates, except for points lying on a blind plane which must
includes the two camera focal points. The triangulation tensor can be computed directly
from the camera matrices and the blind plane. For applications where this plane can be
placed outside the common field of view of the cameras the triangulation computation can
be made very fast; a 4× 9 matrix multiplied onto the outer product of the homogeneous
image coordinates reshaped to a 9-dimensional vector. The triangulation tensor is not
unique; for a given configuration of the two cameras, the set of possible triangulation
tensors is at least 2-dimensional.

The tensor based approach allows us to investigate which tensor minimizes 3D errors
for a calibration set of corresponding 3D+2D+2D coordinates, without first determining
the camera matrices. This is in contrast to the above mentioned optimal method which
cannot take such a priori information into account and also requires accurately estimated
camera matrices. Furthermore, this tensor calibration can be based on any reasonable
type of 3D error that suits our purpose. Such a calibration for a stereo triangulation
tensor is described in [8] which minimizes L1 errors in the 3D space. This process starts
with a standard estimation of the triangulation tensor from corresponding 3D+2D+2D
coordinates and then refines the tensor by iteratively minimizing 3D and 2D errors. The
resulting tensor provides 3D L1 errors similar to the optimal method. In this comparison
it is important to note that the computational cost of the optimal method is significantly
higher than for the tensor based method.

1.1 This paper
The stereo triangulation method described in [8] is here generalized to three views. The
same algebraic derivation used in [6] for the stereo case is here applied for three views
with the main difference that the space of feasible tensors now is larger. Given a set of
corresponding 3D+2D+2D+2D calibration points, an element of this space can be deter-
mined that minimizes the total 3D L1 residual error. In comparison, this tensor does not
produce as low errors as the optimal three-view method does. However, by applying a



second optimization stage which adjusts all elements of the tensor, the 3D residual er-
ror can be reduced to the same level as the optimal method. As a result, this one-shot
optimization produces a tensor which both efficiently and accurately can reconstruct 3D
points from three views, assuming that the calibration set is representative for the points
used in later reconstructions.

2 A three-view triangulation tensor
In this section, the three-view triangulation tensor K is derived analogous to the approach
presented in [6] for the two-view case. The presentation is based on the multi-view pin-
hole camera model in which the relation between 2D image coordinates and 3D world
coordinates is described as

yi ∼ Ci x [yi,α ∼Ci,αβ xβ ] (1)

where x and yi are the homogeneous representation of corresponding 3D and 2D points,
Ci is the camera matrix of view i, and ∼ denotes vector equality up to a scalar multi-
plication. We will sometime use the type of vector/matrix based notation shown to the
left, sometimes the coordinate based notation shown to the right, and sometimes both. In
the case of coordinate based notation, lower case Latin indices are used for enumeration
of views, Greek indices enumerate elements of tensors, and an upper case Latin index
represents a group of three Greek indices. Einstein’s summation convention is assumed.

The outer product or tensor product of the three homogeneous image coordinates is

y1⊗y2⊗y3 ∼ (C1 x)⊗(C2 x)⊗(C3 x) [y1,α y2,β y3,γ ∼C1,αδ xδ C2,βε xε C3,γφ xφ ] (2)

Reorganizing the factors gives a more operational description of the mapping from x to
y1⊗y2⊗y3

y1⊗y2⊗y3 ∼ (C1⊗C2⊗C3)(x⊗x⊗x) [y1,α y2,β y3,γ ∼C1,αδC2,βεC3,γφ xδ xε xφ ] (3)

Y ∼ C X [Yαβγ ∼Cαβγδεφ Xδεφ ] [YI ∼CIJ XJ ] (4)

In Equation (4) C = C1⊗C2⊗C3 is seen as a 27×64 matrix which maps X = x⊗x⊗x
(reshaped to a 64-dimensional vector) to Y = y1⊗y2⊗y3 (a 27-dimensional vector).

The next step is to make explicit the fact that X = x⊗ x⊗ x always is a completely
symmetric third order tensor on R4, hence an element of a 20-dimensional subspace de-
noted X . Let P denote the projection operator of X , i.e, P X = X for X ∈ X . This P can
then be seen as a 64×64 matrix, which allows us to write

Y ∼ C P X = M X [YI ∼CIJPJLXL = MILXL] (5)

In this notation, M = C P corresponds to a 27×64 matrix which acts on X. The rank of
M is 17, which can be motivated as follows. In the case that y1,y2,y3 represent corre-
sponding image coordinates, i.e., they are the images of the same 3D point x, they must
satisfy an incident relation which takes the algebraic form

Y ·T = 0 [YITI = 0] (6)

where both Y and T represent 27-dimensional vectors. This relation is similar to the
epipolar constraint defined by the fundamental matrix for two views. In [7] it is shown that



the set of point matching constraint tensors T forms a 10-dimensional vector space. Con-
sequently, the codomain of M is a 27-dimensional space but it includes a 10-dimensional
subspace which always is perpendicular to any image of an element in X , hence the range
of M is of dimension 27−10 = 17.

We now consider M+, the 64×27 pseudo-inverse matrix of M. The codomain of M
is X (20-dimensional) but the range is 17-dimensional (same dimension as the rank of
M) which implies there is a 3-dimensional space of X which cannot be reconstructed by
M+. A basis for this ”space of missing dimensions” can be found in a straight-forward
way1, it must be spanned by the three tensors Nk = nk ⊗nk ⊗nk,k = 1,2,3 where nk is
the homogeneous coordinates of the focal point of camera k: Ck nk = 0. This can be
summarized as: assuming that Y = y1⊗y2⊗y3 is given by Equation (2) it follows that

M+ Y ∼ X+ c1N1 + c2N2 + c3N3 [M+
IJYJ ∼ XI + ckNk,I ] (7)

where ck are three scalars which depend on x. Both sides of Equation (7) are a third order
tensor on R3: [M+

αβγJYJ ∼ Xαβγ + ckNk,αβγ ]. It can be linearly combined with a second
order tensor to produce a first order tensor; an element of R4. The inner product between
the second order auxiliary tensor A and a third order tensor is denoted ”A�”, as in

A�M+ Y ∼ A�X+ ck A�Nk [Aβγ M+
αβγJYJ ∼ Aβγ Xαβγ + ckAβγ Nk,αβγ ] (8)

As a final step to reconstructing x, we will choose the A such that A�Nk = 0
[Aβγ Nk,αβγ = 0α ] for k = 1,2,3. Assuming that this can be done, it follows that

(A�M+)Y ∼ A�X [Aβγ M+
αβγJYJ ∼ Aβγ Xαβγ = xα(xβ Aβγ xγ)] (9)

To see what this means, recall that M+ represents a 64×27 matrix. The 64-dimensional
codomain of this mapping is the direct product R4⊗R4⊗R4 which, however, is reduced
to only R4 after the inner product with A. Consequently, A�M+ can be represented by
4× 27 matrix K. Furthermore, A�X can be rewritten as x[(x⊗ x) ·A] = x(xβ Aβγ xγ)
which leads to

K Y ∼ x [KαJYJ ∼ xα ] (10)

if it can also be assumed that (x⊗x) ·A = xβ Aβγ xγ 6= 0. To summarize, assuming that an
auxiliary tensor A can be found such that A�Nk = 0 for k = 1,2,3, and (x⊗x) ·A 6= 0
then Equation (10) implies that x is reconstructed from the linear mapping K = A�M+

acting on Y, the tensor product of all three homogeneous image coordinates.

2.1 The auxiliary tensor A
It remains to show that a suitable A can be found and to do so it is here assumed that the
cameras focal points are not co-linear. It should be noted that since M+ has its range in
X , the space of completely symmetric third order tensor on R4, it follows that A can be
restricted to symmetric second order tensors since any anti-symmetric part of A vanishes
in the linear combination �. Let p00 be the dual homogeneous coordinates of the plane
which includes all three focal points. In addition to p00 three other planes which are
distinct from p00 can be selected such that each plane includes two focal points:

pi j includes focal points ni and n j for i j = 12, 23, and 31 (11)
1This space is the intersection of the null space of M and X .



This amounts to four distinct planes represented by four linearly independent vectors p00,
p12, p23 , and p31 such that the following relations are valid

nk ·p00 = 0, k = 1,2,3 ni ·pi j = n j ·pi j = 0, i j = 12,23,31 (12)

From this construction of the four planes it follows directly that A = p00⊗p00 satisfies

A�Nk = (p00⊗p00)�(nk⊗nk⊗nk) = nk(nk⊗nk)·(p00⊗p00) = nk(nk ·p00)2 = 0 (13)

for k = 1,2,3 and therefore is a feasible choice for the auxiliary tensor. Using the same
arguments in combinations with Equation (12), the following six tensors are also feasible

p00⊗p12 +p12⊗p00 p00⊗p23 +p23⊗p00

p00⊗p31 +p31⊗p00 p12⊗p23 +p23⊗p12 (14)
p23⊗p31 +p31⊗p23 p31⊗p12 +p12⊗p31

This leaves us with a in total seven linearly independent feasible choices of A and any
linear combination of these is also a feasible choice. In summary, there is a 7-dimensional
space of feasible auxiliary tensors A which implies that there is a 7-dimensional space of
4×27 matrices K = A�M+ which can reconstruct x from the image coordinates.

2.2 The matching condition
Before we move on to make practical use of the triangulation tensor K it should be noted
that its construction implies that

K T = 0 [KαJTJ = 0α ] (15)

for any three-view point matching constraint tensor T. This follows from the fact that any
T lies in the orthogonal complement of the range of M and consequently lie in the null
space of M+. This matching condition on K will play an important role later on when
the elements of K are adjusted to optimize reconstruction errors. This adjustment will in
general imply that the resulting tensor K fails to meet the matching condition. This can
be dealt with by readjusting K relative the matching condition:

K′ = K (I−P′) [K′
αJ = KαL(δLJ −P′LJ)] (16)

where I is the identity matrix and P′ is the projection operator for the 10-dimensional
space of three-view point matching constraint tensors, both 27× 27 matrices. This con-
struction of K′ assures that K′ T = 0.

The matching condition is not invariant with respect to coordinate transformations in
the three image spaces. Transform each of the three image coordinates in accordance to
ȳk = Hk yk,k = 1,2,3 where Hk is an arbitrary homography. This gives

Ȳ = (H1⊗H2⊗H3)Y = H Y where H = H1⊗H2⊗H3 (17)

Assuming that tensor K triangulates from Y to x: K Y ∼ x, we require that a transformed
K̄ instead can triangulate from Ȳ which is satisfied by K̄ = K H−1. Similarly, a three-
view point matching constraint tensor T must transforms as T̄ = (HT )−1 T to assure that
Equation (6) is satisfied for Ȳ and T̄. This means that Equation (15) can be written

0 = K T = K̄ H HT T̄ (18)



Figure 1: The three camera views. The camera centers are approximately 1.3 m from the
corner and approximately 0.5 m apart. Each plane is covered with a calibration patter of
10×15 small dots, approximately 18 mm between the rows and columns.

Consequently, Equation (15) can only be valid for certain choices of image coordinate
systems in the three views. Choosing suitable coordinate systems in which the match-
ing condition is satisfied for K is one of the key elements of the optimization method
presented in the following section.

2.3 Short summary of how to construct K
Here we summarize the computations needed to compute the triangulation tensor K. As
prerequisites we need the three camera matrices C1,C2,C3 and a feasible auxiliary ten-
sor A. The latter can be found by first determining the three camera focal points, find
four planes p00,p12,p23,p31 and construct the seven linearly independent second order
symmetric tensors as described in Section 2.1. A feasible A is given as any linear com-
bination of these seven tensors. In practice, however, we should choose A such that
A · (x⊗ x) = xT Ax is non-zero for all x which are visible in the scene since this factor
is multiplied onto the reconstructed 3D homogeneous coordinates of x. Finally, we also
need P, the 64×64 matrix which is the projection operator for X , the space of completely
symmetric third order tensors on R4.

To construct K, we first form C1 ⊗C2 ⊗C3 as the Kronecker product of the three
matrices, represented by a 27× 64 matrix and compute M = C P. Next, the Moore-
Penrose pseudo-inverse of M is formed by computing its singular value decomposition:
M = USVT where we assume a truncated form of S, i.e., it is a 17×17 full rank diagonal
matrix (remember that 10 singular values are zero, see Section 2). This gives the pseudo-
inverse as M+ = VS−1UT , which can be represented as a 64× 27 matrix. Finally, we
perform the inner product with A to get A�M+. This can be done by reshaping A to
a 16-dimensional vector and M+ to a 16× 108 matrix and multiply A from left. The
resulting 108-dimensional vector is then reshaped back to the 4×27 matrix K.

3 Euclidean 3D optimization: experiments and
refinement of K

In this section we will apply the triangulation tensor K described in the last section on a
set of real 3D/2D data and evaluate its performance. As will be noticed it matters which



Figure 2: A closeup of one of the images. Right: calibration points are marked with
circles and evaluation points with crosses.

auxiliary tensor A that is used for the construction of K in the case that non-ideal data
is used. The performance of K in terms of 3D reconstruction error is also compared to
the optimal method described in [9, 1]. At first sight, the optimal method is significantly
better. However, by performing an iterative two-step adjustment of K to minimize the 3D
error, K can be optimized to produce errors at the same level as the optimal method.

A 3D corner of three perpendicular planes, each covered with a regular grid of 150
points, is viewed from three distinct points with a 1944×2592 digital camera, see Figure 1
and Figure 2, left. The 450 3D points have positions which are measured manually with
an accuracy of approximately 0.5 mm. The corresponding points in the three images
are determined with integer value precision by means of local minima detection. These
positions are affected both by estimation noise, which we can assume to be in the order
of 1-2 pixels, and by geometric noise from the lens distortion. The latter is compensated
for by assuming a radial tangens-based distortion [2] which is optimized to make the
lines present in the point patters as straight as possible. The result is a set of distortion
compensated image points in the three images {y(l)

1 },{y(l)
2 } and {y(l)

3 }, corresponding to
the set of 3D points {x(l)}. Approximately one fourth of the points are then used for
calibration of cameras and later also for K, and the remaining points for evaluation. See
Figure 2, right. Using the calibration sets, the camera matrices are estimated with the Gold
Standard algorithm [3], producing a mean and maximum 2D L1-residual error at 0.50 and
1.5 pixels, respectively (although Gold Standard optimizes relative the L2 error!).

To get a reference for the performance of the triangulation tensor, we start by applying
the optimal three-view triangulation method [9, 1] on the evaluation sets. The L1 residual
error in the 3D space is measured and the mean and maximum is presented in the first
row of Table 1. Next, we compute a triangulation tensor K according to Section 2.3.
The auxiliary tensor A is here chosen simply as p00 ⊗p00, where p00 is the plane which
includes all three camera focal points. Given the configuration of the cameras, this plane is
not visible in any of the three views and the corresponding A, therefore, will not produce
the degenerate case KY = 0. This triangulation tensor is here denoted K00, and it is
used to reconstruct the 3D points from the evaluation sets of image points with errors
presented in the second row of Table 1. As cam be seen, the mean error and in particular
the maximum error are significantly larger than for the optimal method.



Method Mean L1 Max L1
Optimal [9, 1] 0.25 0.79
K00, A based only on p00 1.61 15.0
Kopt, optimizing A 0.36 1.29
K1, optimized, iteration 1 0.33 0.94
K1,readj, enforcing the matching condition 0.24 0.82
K2, optimized, iteration 2 0.204 0.81
K2,readj, enforcing the matching condition 0.200 0.81

Table 1: 3D residual error.

The poor performance produced by K00 may be related to choosing A too arbitrary
from the 7-dimensional space of feasible tensors described in Section 2.1. Instead we are
in a position to determine which feasible A that minimizes the 3D L1 residual error for the
calibration set and choose that A for constructing an optimized triangulation tensor Kopt,
which then is applied on the evaluation sets. The corresponding errors are presented in
the third row of Table 1. We see a significant reduction in the errors even though they are
not at the same low level as for the optimal method. In fact, these figures are comparable
to the optimal method for two-view triangulation2.

In order to reduce the error even further we need to free ourselves from the idea that K
necessarily has to be computed from the camera matrices which, themselves, have been
estimated from the calibration data sets. We can simply try to determine the elements of
K such that the resulting tensor minimizes the 3D L1 residual error. This corresponds to
a non-linear minimization problem which has to be solved with some iterative method,
and we can use Kopt as the initial value for this optimization. Compare this to the Gold
Standard method for camera calibration [3], with the difference that here we determine
the multi-linear transformation from 2D+2D+2D image coordinates to 3D coordinates
(instead of from 3D to 2D) and the error function uses the total 3D L1-norm (instead of
the total 2D L2-norm). The resulting tensor is denoted K1 and the corresponding errors
are presented in the fourth row of Table 1. It gives a reduction of the errors but it is still
some distance to the optimal method.

So far we have focused on 3D errors, whereas the optimal method instead minimizes
the total L2-reprojection error in the image domain by adjusting the image coordinates so
that they satisfy all three-view point matching constraints3. What about trying to do both?
Given the three camera matrices, a basis of three-view point matching constraints can be
determined [7], and a quick investigation of K1 shows that it does not satisfy the matching
condition described in Section 2.2. In particular this is the case if we transform the images
to the normalized coordinates described in [4]. We will use normalized coordinates since
they provide a better correspondence between operations in 2D projective spaces and 2D
Euclidean errors. Consequently, we enforce the matching condition on K1 by computing
K′

1 in accordance to Equation (16). The corresponding 3D errors for K′
1 are presented in

the fifth row of Table 1 and this operation clearly brings us to something that is comparable

2Optimal three-view triangulation gives approx. 30% better accuracy than optimal two-view triangulation on
the same data.

3Even though the three-view point matching constraints never appear explicitly in [9], this is exactly what
happens since all adjusted image points refer to the same 3D point.



to the optimal method.
What we have done so far can be described as two steps: (1) given some initial value

of K, its elements are adjusted to reduce 3D errors, (2) this K is again adjusted, now to
meet the matching condition in normalized image coordinates. Since the latter step has
reduced the target function of the former step, it seem reasonable that it can be even further
reduced by using K′

1 as the initial value of the first step to produce K2, and it may be even
further reduced by again enforcing the matching condition in K′

2. This is indeed the case,
as can be seen in rows six and seven of Table 1. At least the mean error decreases below
the optimal method, although the maximum error remains slightly higher. Furthermore,
the step from K2 to K′

2 gives only a minor improvement which implies that there is little
to be gained by performing further iterations of the two steps.

4 Summary
This paper presents a computational approach to three-view triangulation in terms of a
multi-linear mapping K applied to the three homogeneous image coordinates which di-
rectly gives the homogeneous coordinates x of the corresponding 3D point, Section 2. We
can interpret this as: x is given by a linear mapping on Y, the tensor product of the image
coordinates. This means that once K is determined the computation of x can be made
very efficiently, in particular relative to optimal approaches [9, 1], making the proposed
method relevant for real-time applications, e.g., in terms of GPGPU implementations. K
can be computed from the three camera matrices and an auxiliary tensor A which lies in
a 7-dimensional space, described in Section 2.1. Even if we choose A to minimize 3D L1
residual errors, the resulting Kopt has larger errors than optimal triangulation, but it can
be used as initial value for a two-step iterative approach which adjusts all elements of K
to minimize both 3D and 2D errors. The first step adjusts the elements of K to reduce the
3D error. The second step readjusts the tensor to ensure that is satisfies the matching con-
dition in normalized image coordinates, Section 2.2, implying that Y is adjusted to satisfy
all three-view point matching constraints before being mapped by K. These two steps can
then be iterated a few time (here only two times) to reduce the 3D L1 error to the same
level as the optimal method. This means that we can perform a one-shot optimization of
K based on a set of 3D/2D calibration points and obtain a tensor which efficiently and
with 3D error comparable to the optimal method can reconstruct 3D points, assuming that
the calibration set is representative for the points to be reconstructed in the later step.

The result presented here for three view triangulation corresponds well to the stereo
case presented in [8]. In both cases is it possible to carry out a calibration of the triangu-
lation tensor which produces 3D errors similar to what the optimal methods gives, even
though the 2D reprojection error is significantly larger for the proposed method.
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