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Abstract

We model the class of problem faced by a video broadcasttditezho must

act as an active perception agent to select a view of inteveshuman from
a range of possibilities. Real-time learning of a broaddastction policy

is achieved by efficient online Bayesian learning of the nliegearameters
based on intermittent user feedback. In contrast to egjistinchine direc-
tion systems, which are dedicated to a particular scenauiyovel approach
allows flexible learning of direction policies for novel dams or for viewer-

specific preferences. We illustrate the flexibility of oupegach by applying
our model to a selection of scenarios with audio-visual tnpcluding tele-

conferencing, meetings and dance entertainment.

1 Introduction

In live video broadcast (e.g., on television), the job of adufcast director is to provide
views of interest to a human audience from a range of pog#bil A director will instruct

a cameraman to steer his camera to frame salient parts oha scel, when there are
multiple cameras, he must also choose which is the bestaalailiew for broadcast.

When doing this, it is important that the view is changed inemaping way (e.g., without

steering or switching too rapidly) and textbooks, such &sgévide good videography

policies for human directors to follow in common scenariddempts have been made to
engineer expert machine directors to automate directiofaiious specific settings. We
briefly describe three scenarios which have received isténeautomatic broadcasting:
lectures, meetings and sporting events.

Recent interest in remote working and learning has madétédicin of live or on-
demand Internet broadcast of lectures important. [7] dessma system which directs the
broadcast of lectures. This system uses two pan-tilt-zddhz] cameras: the first camera
can be steered to show a room overview or to track the spediee; the second can be
steered to show questioners. The system implements aidivgxilicy designed by inter-
viewing professional human directors. This policy spesifiew the cameras should be
individually steered and jointly cut-between given inpeiafures such as face detections
and microphone array responses. Remote working has alatedrimterest in broadcast
and summarization of meetings. [1] describes a machinetdirevhich switches between
views of each participant and various overview shots. Thection policy is in this case
based on participant visibility and speech and motion @gtiAutomatic camera man-
agement for sports broadcasting is also topical. For examp[3], the authors engineer
a digital pan-zoom system to select a salient standard tefinvindow for broadcast
given a fixed position high definition video of a soccer evditis system tracks players
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and the ball and uses their locations to compute how to parzamah. In each of these
cases, significant engineering effort has gone into bigldisystem that is optimized for
performing good videography in a specific set of circumstanc

In this paper we describe a probabilistic framework whigiresents the general class
of problems faced by a broadcast director. The parametensrahodel are learned from
viewer feedback, replacing the need to interview expertiseargineer a system for each
specific scenario. This means that direction policies catedeed for new or unusual
subject domains, for which expert human directors may nist.eMoreover, by rapidly
learning the model online, the broadcast policy is custenhi fit the viewing prefer-
ences of an individual user. We describe particular paraoferms suitable for efficient
learning in continuous (camera pan-zoom) and discretet{icarera switch) domains.
Finally, to illustrate the generality and benefits of ourféag approach, we apply our
adaptive machine director (AMD) to a selection of scenairickiding teleconferencing,
meetings and dance.

2 Generic Framework

In this section we formalize the task of a director. At eachett the (human or ma-
chine) director must decide on the next camera adfioto take in response to the cur-
rently observed state of the worlg, and possibly also some of the past histeky=
{s11-1,d1t—1}. The history is necessary to ensure smoothness in the tasiselen when
the input states is not varying smoothly, and to make some complex directiaigiments
which require accounting for long range correlations (eagoiding view boredom). We
define thalirection policyrrto be the functiom; = (s, Hi; 6), parametrized bg, which
specifies the action to take at each time. Videography textb{?] specify rule-based
forms formand® in well-known domains. Like the machine direction systerasalibed
in Sec. 1, we use the response of various (potentially salfeature detectors (such as
face, motion and speech detectors) as the input to the mgdélhe features used are
simple and cheap enough for real-time computation and itapty, interpretable, so
that for known scenarios, prior knowledge abéutan easily be exploited.

Our goal will be to perform online learning of the paramet@reequired for good
videography using a small number of user-labeled diredtistructions{s,d;,H:}. To
model the changing uncertainty about the policy as moreidathserved, we will main-
tain a distribution over the parametgu&0|d;¢,s11). In the case of discrete actiods
(such as switching between cameras) the problem of leafhiagelated to online semi-
supervised classification, while in the case of continuai®as (such as panning and
zooming a camera) this problem is related to that of onlimeisipervised regression.
Fig. laillustrates a probabilistic graphical model to esg@nt the broadcast direction prob-
lem: in our experiments we model only first-order histéty= {di_1}. The general
procedure for using the adaptive machine director conefstiree phasesprediction
validationandlearningwhich are described next.

Prediction At timet, the next actiort; is selected, based on the observed stasand
current policy estimate(8|s11—1,d1t—1). The posterior over actions is computed as

p(ch|ds 1,514) = / p(ch|0,s,ck_1)p(B]das 1,511 1)d6, (1)



Figure 1: (a) Graphical model to describe the broadcastidirevith adaptive policy.
The direction decisions; are and policy paramete are to computed online given
observations. (b) Alternative graphical model used to describe the bcaatldirector
problem in the discrete case.

from which next actiord; is sampled and the cameras steered or switched approypriatel
Standard, non-adaptive, machine direction systems[7, & hot update the parameters
6 and effectively implement a deterministic version of thisgiction step; we also have
validation and learning phases which allow the system tptaiaine to user feedback.

Validation As a result of the prediction phase, the broadcast viewetidyser is up-
dated. If she has a strong preference about what she wishiesmghe may take manual
control to steer or switch the cameras. This is done via a ingenface which enables
correction of the machine director’s decision with simpleuse input. Her instruction
thereby labels the desired actidn If, however, she is content with the director’s deci-
sion, she may sit back and continue to watch. In this caséhahalso labeled the current
action, if only by implicit consent. A key property of the AMfroblem scenario is that
implicit consent as well as explicit instruction are infative, but the former requires
less user effort. We can therefore treat what appears to émiassipervised problem as a
fully supervised one, albeit with a potentially asymmetticoise model (see Secs. 3, 4).

Learning Following validation, the correct actiodk, is known either by explicit in-
struction or implicit consent. The posterior over the dii@t policy p(6|d1t,S11) can
then be updated as

P(di|d111,811,6)p(6[d1t1,S11-1)
0ldis,s11) = ' ’
p(6|d11,S11) p(dt|d11-1,S11) )

There are two key features that make this procedure efeedtivstly, with appropriate
parametric choices for the model, the prediction and learsieps can be computationally
inexpensive. Secondly, with well chosen features, the indervention step need only
happen very rarely and the system will converge to a welieefj customized policy with
very little cost in terms of both computation and user inégrion.



3 Continuous Model for Pan and Zoom Policy

In this section we describe a particular parametric moddl some example scenarios
where this framework can be used to learn a policy for pame(®Z) control of a cam-
era. In this case, the decision variable= {dx,dy,d,}: is real-valued and the director
implements a regressor. We define the world state in terma df-dimensional vector

of real-valued features representing quantities such as the location and scale-of de
tected motion and human faces etc. Generalized linear mpdelide a convenient and
tractable model for Bayesian regression, and we thereffiealthe prediction model for
each decision dimensiaras

p(ditls, B,8) = A (dit]8TD(s),57Y), 3)

where the precision parametgrdescribes the noise on the decision variables. The ba-
sis functions® can be any fixed functions of the input state. For many scesatine
goal is effectively to frame up a salient region of the scehe.these cases the pan-
zoom decision is itself a linear function of the state feasuand linear basis functions
®(x) = {1,x1,..,xm } can be used. Non-linear basis functions (e.g., Gaussiaal tzabis
functions), permit more complicated non-linear policiesat be learned (see Sec. 3.2) but
yield only subtle viewing experience improvement whileuigiqng more data to train. In
this paper, we therefore use linear basis functions.

The distribution over the policy parameters (in this cagertdgression vector) is
taken to be Gaussiap(6) = .4 (6 |ug,2g ). The predictive distribution required to per-
form direction is therefore given by the standard equationBayesian linear regression,

p(dit|di 1t 1S1t,&) = [ p(ditls:, B, &)p(6|di 1t 1,511 1)d6 = A (dit| g, OF), (4)

wherepy, = uglqb(s[) andodzi =& 14+ ()72 P(5) (in whichd;_1 is included ing to
lighten the notation) . At each tinte the posterior distribution over the policy (weight)
vector§; is updated in response to the stgtand the associated action seleatied

p(Bidi1t,S11,6) U p(dit]sit, B, €)p(6|di11-1,511-1,8) = A (6 |Hg 1. Z6.1)
Mot = Zou(Zgqy sHar 1+ a&® (s)di)
Sat = ZaiaT &) O(s). 5)

By learning the distribution over weight vectdisthe model leans the salient input fea-
tures (or combination thereof) for a given scenario or uggrthe expense of further
computation time, the observation noise paramedetsuld be dealt with automatically
in various ways including generalized maximum likelihoétbwever, for our purposes, it
is sufficient to set them empirically. Intervention and implconsent may not be equally
informative (i.e., the user may not always bother to suertihe system when it does
an acceptable but non-optimal job). We therefore introduceparameters ande’ for
learning in response to active and passively supervisadsmpspectively, where > ¢'.



3.1 Results

In the following two examples the input features provideel lre response from face[5]
and motion detectors[6]. These return the position andesafaihe region bounding de-
tected faces and motion respectively (or null if nothingesetted).s is therefore a six-
dimensional vector when both faces and motion are deteatdaiee dimensional vector
when only one of these is detected and null when neither westected. A fixed decision
tree was used to switch amongst these possibilities andskparate regression models
were learned to cover each of these possibilities.

Teleconferencing Scenario  In a teleconferencing scenario, it might be desirable t@hav
a PTZ camera (or fixed wide-angle camera), where the camanaeeahanically (or dig-
itally) track the user to broadcast a well-framed video @fittiace. This is trivial to en-
gineer given efficient face detection technology[5]. Hoerewe will illustrate efficient
learningto track faces, without prior knowledge of their relativéiesacy and with good
videography. Fig. 2 illustrates learning this task startivith an uninformative weight
prior. By halfway through the one minute sequence (Fig. &c)\&ith only 27 interven-
tions, the model is doing a good job of broadcast directidg. @) and needs no more
human supervision. It has learned the relevance of facdsharirrelevance of motion for
this task (Fig. 2b). This task is very similar to that of thegenter tracking componentin
lecture broadcast systems[7], indicating that we couldyel@srn such scenarios as well.
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Figure 2: Teleconferencing Scenario. (a) Sample broadtasjes. (b) Original images
with detected features. (c) Training performance: AMD visaéull explicit supervision.

Dance Scenario  We have mentioned previous applications of machine braadiia
rectors to entertainment scenarios, specifically socket[Bthis scenario we illustrate
learning in a novel entertainment scenario, namely darsieguhe same two features as
before are used. Fig. 3 illustrates learning of this novehscio starting with an uninfor-
mative weight prior. Within 45 seconds and 18 interventigftig. 3c), the model is doing
a good job of broadcast direction (Fig. 3a). In this case trectbr learns a policy based
largely on framing the region above and around the motiondwis concentrated at the



figures’ legs) and ignores (learns zero weight) for the moreliable face cue. For this
second scenario, the cue saliencies are reversed compasieleéd conferencing.
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Figure 3: Dancing Scenario. (a) Sample broadcast imagesOrfginal images with
detected features. (c) Training performance: AMD vs nailesikplicit supervision.

3.2 Summary

In this section, we described a class of machine directioblpms and solutions where
the learning of a direction policy corresponds to learnimggression model. We illus-
trated that the policy for a teleconferencing problem carnelaened online with only a
small number of explicit instructions. The simple linealat®nship we used between
feature values and camera position allows learning stanudes of good direction such
as framing up the salient area at a fixed scale, zooming gltiliduring periods of high
target motion, and zooming out to maximum if the salientéaig/lost (e.g., Fig. 2, fourth
sample frame). Subtler non-linear policies, such as amgidontinuous small corrections
by panning to track only when the salient region has left @aarival bounding box, can
also be learned (using e.g., Gaussian basis functionsghuire more training data. The
problems considered so far assume a single camera neediogydieered. In the next
section, we introduce a discrete valued action model towattdor camera switching.

4 Discrete M odel for Switching Policy

In this section we describe a structure and particular pamdecnmodel with which our
framework can be used to learn a policy for switching betwmeittiple cameras using a
discrete decision variabté = {1,..,N} ranging over the number of available caméxas

In this case thé/ observations irx are discrete variables representing quantities such as
the presence or absence of faces, motion or speech actititinwhe view of each cam-
era. In contrast to Sec. 3's regressor, the direction paofiagt now implement a dynamic
classifier. To minimize the number of policy parameters amhitain an interpretable
structure, we will assume independence between the featur@ consider a commit-
tee of simpler models. Although the broadcast directiorbf@m is discriminative, to



avoid the difficulty of rapidly training a product of expeytpe model online, we move

to a generative thouga-causalmodel (Fig. 1b). The structure now encodes a Markov
model on decisions, where at each time-step observatiengererated in a factored
(naive-Bayes) way(s|d:) = [ p(sit/dt), and we now infer a distribution over actions
p(dk|s,0) O p(ck|8)[7; p(sit|dk, 8). Conceptually the problem is still the same as Sec.
3 and Fig. 1ap still parametrizes a direction policy = (s, H; 8), but now indirectly

via the likelihoodp(s|dt, 8) used during inference of the decision. Eqgs. 6 and 7 define a
specific multinomial observation and conjugate Dirichleliqy prior for the observation
and transition models respectively:

P(St|dk, By.i) = Multi(s t; 6a.i), p(ck|di—1,5¢_,) = Multi(d; g _,),
P(6q.i) = Dir(6q.i;ag.i), (6) P(dq._,) = Dir(dq,_,;0aq,_,)(7)

The parameter@ = {6y;,9q} include 6y, governing the distributiop(s t|ck, 84;) over
observations;; in each modality, anddy, ,, governing the transition between decisions
p(ck|d—1,8¢, ,). The Dirichlet sufficient statistic vectors for the distritons over these
parametersgq; andag, have dimensionality equal to the number of possible states
modalityi and the number of actiorid respectively. They will effectively represent the
number of observations of each action-modality-state atidraaction pair. (So, for
example, if we want a policy where camera 1 is shown prefeanivhen faces are
visible, we could havely—_cami i=facess=face > Od=cami,i=facess=no face) 1N€ Nextaction

is selected by computing and then drawing from the multirbmiedictive distribution
over actions given the past examplés= {d11_1,S11—1} as follows,

p(d|s, He)

/p(dt,e|s,Ht>de,

[/ P(Slck. B0, (B M08 s | P(chick-1, 90, )P(6,[H)da, .

(|

(|

oy, oo Og g
|i-| Multi (S¢; Z;[q,i ) - Multi (d; Zad[,l)’ (8)

To perform learning, after validation at eaghwe update the posterior distribution
over parameter@ given the new observatioss d; as in Eq. 9,

p(Ols, i, Hi) O p(sd, 0)p(6[H:)
= [][]Pir(6u,léa.)
d i
ad7i7s = ad7i7s+|[S:S,t]|[d=d[]- (9)

Assuming a factored prior distribution(6|H;) the posterior also factorizes and learning
simply requires incrementing appropriate elements of tlieysufficient statistic vectors
a to reflect the new data. The transition model is learned aityil Effectively, there
areMN observation “experts” and one transition expert votingdach decision. Each
expert’s vote is based on the historical statistics of theeolled modality and actions for
which it is responsible.



As for the continuous case, we might wish to account for themally unequal in-
formativeness of explicit intervention and implicit conse~or implicit learning purposes
we would ideally model making a noisy observation of the aeect decision, but this
correlatesdy js and results in a non-factorized posterior o8eA compromise is to pre-
tend that the uncertainty during implicit consent is indt@athe observations, nog.
Integrating over the “unknown true” observatiaggiven a noise moded(g |, €) brings
in asymmetric noise in a tractable way, so Eq. 9 is replacéit wi

p(Bls,diHe) O Y [ p(sitlsit, €)p(sielck, Bg.i) p(O]H),
S |

0 (S Dil‘(ed,,i|ad‘,i)p(sil,t|37ta£)> []Dir (6uilau,i),

i d:d£d; i
adt,i’s = O4,ist![s=si] (20)
p(B|s,ck,He) [][7]Dir(6q.ldq,.s)- (11)
d i

1

The posterior over policy again factorizes into a product (over decisiomsmd modal-
ities d) (Eq.11). Each policy factofy; is a sum over the updated policies given each
possible observatiog weighted by the likelihoog(s|s, €). This can be approximated
efficiently and accurately using moment matching[4] to det statistics of the final
posterior factors. The empirical effect of this implicitisent learning is to add an incre-
mentk < 1 to the counteny; s for each observatioft, s ;) wherek decreases as more
evidence is accumulated. Like the continuous casean be set empirically. Implicit
observations therefore count for less than explicit ondse(@k = 1), and the policy
confidence attainable purely by implicit consent is limited

4.1 Results

Meeting Scenario  We now apply the discrete action model to broadcast direaifa
meeting recorded by multiple cameras. The aim here is tatsate appropriate single
view to broadcast at each time step. We use data from the Abjégtrcorpus[l] as a
source of raw multimedia meeting data from which five caméwas (one of each of four
participants and an overhead view) and the audio input flwarfdur participant’s lapel
microphones are taken as input. To identify speech fromdpacind for each participant,
the raw audio data is pre-processed into a binary speedctitpétiature by training a two
component mixture of Gaussians on the signal power. As isdhénuous case, face and
motion presence features are also includesl,iwhich is therefore a twelve-dimensional
binary vector. Based on these features, the model will laalinection policyd to specify
di: how to switch the cameras over time.

Results from a meeting scenario are shown in Fig.4. In thég cthe model was
trained during the first three minutes of viewing, requirB®jinterventions (see Fig. 4d).
The next 60 seconds of data are illustrated by speech andmenttivity plots in Fig. 4a.
On the basis of these and the face features, the model chesetions illustrated by
Fig. 4b, for which sample frames are shown in Fig. 4c. In thisecthe model has learned
the irrelevance of face features and the saliency of spestimation. One challenge in
this task is dealing with transitions between saliency afipi@ants. As a person takes
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Figure 4: Meeting Scenario. (a) Input speech and motiowigicteatures for participants
1-4. s - speech, m - motion. Shading indicates user actilajyBroadcast decision. Shad-
ing indicates the user broadcast. (c) Selected sample &aaheTraining performance.

over the floor we might like the camera view to switch promptgwever, if two people
are vying for the floor, speaking over each other, we migtg filkeriodically alternating
shots of them rather than rapid oscillations of view. Thectrre of our model allows just
this; cameras effectively have “experts” arguing for thembasis of the relevant input
features, while the transition “expert” simply wants sntowgériation. Therefore when
one person takes over speaking, (e.g. at 190s) the expestsagd out-vote the transition
model for a rapid response. When two people talk over eaddroffr.g. 200-210s), the
experts disagree, so sampling from the decision posteitbout filtering would result in
rapidly oscillating views of P1 or P2. However, in conjunctiwith the learned transition
model, sampling from the decision posterior results in @eayet fairly smoothly varying
view. Finally if everyone or no-one is talking (e.g. arour858), all the experts disagree
and the chance of switching to the backup overview shot besaignificant.

4.2 Summary

In this section we described a class of machine directioblpros and solutions where
the learning of a direction policy corresponds to learnimtymamic classification model.
We illustrated that the policy for a meeting broadcast pgobtan be learned online with
only a small number of explicit instructions. The simpletéaed formulation reduces the
number of parameters to learn and produces a model witlyéatsitpretable behavior. At
the same time, it is sufficiently flexible to learn new scemari user preference policies.
For example, a viewer may prefer to see responses of stromp\ag) or disapproval
of the speaker than to see the speaker herself. Although wedattempt to do this



here (as computing emotion from speech and facial expregsmurrently expensive and
unreliable) such features could trivially be included im tamework.

5 Discussion

Summary Machine direction systems have previously been enginderemdrious spe-
cific tasks. In this paper, we developed probabilistic medei this entire class of tasks,
illustrating their underlying commonality as dynamic reggion and classification prob-
lems. We introduced the novel task of learning such models fidata online, and pre-
sented a real-time solution. This allows broadcast divecfiolicies to be learned for
novel scenarios, for which expert human or machine dirsataaty not exist or be eco-
nomical. Using our framework, it is possible to learn any rseenario if the input feature
bank provides at least some relevant feature(s) (which neetbe known in advance).
We illustrated this by learning a novel scenario involvirajmde. Moreover, the nature of
the problem allows policies to be learned with minimal ugtre This framework there-
fore allows individual user preferences to be learned,i@hy enabling new patterns of
future media consumption.

An alternative theoretical approach that could be used tdehthe AMD scenario
is that of reinforcement learning (RL), in which the user giynrewards or punishes the
model for its decisions. We did not pursue this because tip@werished nature of the
feedback in RL means that much more training is needed tim aftend performance. In-
stead, we exploit the opportunity to learn rapidly from fangieted explicit supervisions.

FutureWork While the size and complexity of problems illustrated sodfia limited,
our framework is designed to be extensible. Adding furtleatdres for new problem
scenarios is trivial and non-linear decision functionsloamearned by changing the basis
functions used or by using more sophisticated classifieesak# also investigating more
sophisticated temporal correlation modeling for impraviasponse latency, smoothness
and long range correlation modeling. Finally, we would dike to unify the different
model forms currently used for discrete and continuoustioe.
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