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Abstract

We present a novel and fast algorithm to solve the PersgentiFoint prob-
lem. The PnP problem - estimating the pose of a calibratecmbased on
measurements and known 3D scene, is recasted as a minonipatiblem
of the Object Space Cost. Instead of limiting the algoritlmmpérspective
cameras, we use a formulation for general camera modelsmirtimization
problem, together with a quaternion based representafitireaotation, is
transferred into a semi definite positive program (SDP)s Tisinsfer is done
in O(n) time and leads to an SDP of constant size. The solution of &S
a global minimizer of the PnP problem, which can be estimatdéss than
0.15 seconds for 100 points.

1 Introduction

Estimating the pose of a calibrated camera has lots of aijuits in Computer Vision,
Robotics and Augmented Reality. Previous attempts solepitoblem either for a spe-
cific, small number of points (three points [4] or four poif@}. Others try to solve for an
arbitrary number of points using iterative methods [12,8,1B], which minimize a given
cost function. One drawback of such methods is the compui@tburden. To overcome
that burden, non-iterative methods [16, 6, 2, 11] have beseldped. These methods
reformulate the problem in a way that it can be solved by alsifigrge) equation system
(O(n?) [16] or O(r®) [2)).

Limitations for all of these methods are either (i) the fdwttthey gain speed by
approximating the cost function (non-iterative ones),iptdck in reaching a global min-
imum (iterative ones).

These limitations have led to a search for global optimiratnethods. Recent re-
sults were obtained by Agarwal et al. [1]. They proposed ® aibranch and bound
algorithm together witlsecond order cone programs (SOCP) to estimate global solutions
for triangulation and camera pose estimation. For posmastn they modeled the cam-
era as a 4« 3 matrix without accounting for the constraints on the iotamatrix. The
achieved runtimes vary from 42 seconds (6 points) to 250rek@L00 points). Using
the constraints of the rotation, Hartley et al. [8] propoadmianch and bound algorithm
which solves iteratively an approximation of the originablplem. Due to properties of

*This work was supported by the Austrian Science FoundakuWH, project S9103-N13).
TE-Mail: gerald.schweighofer@tugraz.at, axel.pinz @aagat

BMVC 2008 doi:10.5244/C.22.55



Vi

Figure 1: Object Space Costfor General Camera Model.

the approximated rotation, this led to a SOCP too. In [13§sOh et al. used the same
branch and bound algorithm, but quaternions as representation for rotatidReported
timings range from 1.5 to 10 minutes (for 10 points) and frono 24 minutes (for 4
points) depending on the approximation of the rotation.

In this paper we propose a non-iterative fast global optsoéition to the PnP prob-
lem. This is achieved based on the following three ideasstRine problem is recasted
as a minimization problem using the object space cost. Tés$is used in many pose
estimation algorithms [10, 18, 5]. In [11] and [18], comans of different pose esti-
mation algorithms were performed. The conclusions of beibeps are, that minimizing
object space cost gives the best accuracy of the estimased Becond, the minimization
can be transformed to a semi definite positive program (SBiRgLthe theory of sum of
squares [15]. Third, this SDP can be efficiently solved, giginblicly available tools like
SeDuMi [19].

One main difference of the proposed approach compared tottier global opti-
mization algorithms is the fact, that the time consuntingnch and bound algorithm is
avoided. Only one SDP need to be solved to estimate the géabation. This can be
achieved in less then 0.15 seconds (for up to 100 points)emsdthan 0.3 seconds (for up
to 1000 points) usinIATLAB on alntel Core 2 Duo 1.6 GHz

In the remainder of the paper, we first introduce the genemalera model and its
appropriate cost function. Using that cost function we folate the PnP problem as a
minimization problem. After that we give a short introdctiof sum of squares opti-
mization, and show then how the PnP problem can be globaWgdaising that theory.
Finally, we conclude with experiments.

2 Problem formulation - PnP for a General Camera
M odel

We follow the definition of a General Camera Model (GCM) déssd in [7], and use
the same notation as [17]. Instead of measuring a positideéra sensor, a direction is
measured. This direction is represented by a tupld.( Based on these measurements
the Object Space Error for General Camera Modelsis defined as [17]:

vivi§

&(REXi) =[|(1 = Vi) (RX; +t—c)[|* with Vi= . (1)



As an example the costsfor pointsX; are shown in Figure 1. The cogtmeasures the
distance between a world poiKt and the projection of this point onto thiee of sight.
The indexi represents one @k points.

Given world pointsX; and their measurement in a calibrated camerafdc;), the
problem of pose estimation is defined as finding the pBsanft), for which the sum of
all costs is a minimum:

nj nj
. o . N . \/ ) A 2
arngQ{nE(R,t)_argr%ni;a(R,t,X.)_argrggni;H(l Vi) (RXj+t—a)|| (2)
subject toR € SO(3)

Solving for an optimal translatiotyy is given by differentiating (2) w.r.t. the translation
t and setting the result equal to zero [10, 5, 18]:

-1
topt<zoi> SQRG+a)  with  Q=(1-V)T1-V). @)

Let us introduce the operat6(X):

XT 013 O1xs
C(X)=| Oxs X' 0w |, (4)
O1x3 O1xz  XT

where Q.3 is a zero matrix of size & 3. Using that operator and a vector based represen-
tation of the rotation matrix(R) = [r],r],r1]" (R=[r1,r2,rg]), the optimal translation
topt is given by

topt:T3><10|: :rL } with Tax10= (Z Qi) ZQu i) cl. (5

Using this result and the vector based notation of the anatithe original problem (Pose
Estimation for a General Camera) (2) can be written as:

argmin rTMr + Mcr + Mg (6)
subject toR € SO(3),
with

M= z XI ‘ G +T3><10) Qi ([C(Xi) | Ci] +T3><10) = (7)

I
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What makes the minimization problem in (6) complicated isdbiestraint R € SO(3)”,
which restricts the matriR to be a valid rotation matrix.
In case of a single perspective camera all measurementmtgyrsect in the optical

center of that camera. Therefore, without loss of gengralit ¢c; = 0, which results in
M. = Ogx1 andMc = 0. Such a minimization problem (argmin' M,r) was solved by



Ess et. al [5] ignoring the constraint on the rotation. Igmgrthe constraint leads to a
singular value decomposition (SVD) algorithm. One mainndrack of that approach is
that the result of the SVD is not a valid rotation, and theref® second SVD is needed
to normalize the result. Still, the result of this algorithm is not theiofl solution of the
problem, due to this two step approach.

Schweighofer and Pinz [18] solved the same problem (2) parating the constraint
on the rotation matrix using an iterative approach. Theynthuhat there can exist up to
two minima and therefore an iterative approach can end updosd minimum instead of
the global minimum.

In this paper we solve (6) with the constraRte SO(3), which leads to ajlobal
solution. We do that using recent results in global optimization, elgnthe theory of
sum of squares (SOS). In the next section we give a short ievenf how SOS can be
used for global optimization.

2.1 Sum of Squaresfor global minimization
Finding a global minimizer of a functiof(x) could be replaced by

maximizey (8)
subject tof (x) —y >=0.
In (8) one needs to show that the constraint is positive fox.dh general this problem is
NP-complete [15].
An easier, and computationally more tractable way is to sth@tf (x) — y is a sum
of squares. To start we begin with the definition of a sum ofasgsl (SOS) [15]: A
multivariate polynomiap(xy, . .., Xn) = p(X) is a sum of squares if there exist polynomials
f1(x),..., fm(X) such that

P = 3 1700 ©

Using that definition it is clear that the polynomjz(x) > 0¥x. To show that a polynomial
p(x) is an SOS it is sufficient to show that there exists a semi defpositive matrixQ
such that

p(x) = Z" (x)QZ(x), (10)
whereZ (x) is a vector of monomials of The non-negativity constraint in (8) is replaced
by an SOS constraint

maximizey (12)
subject tof (x) — y = ZT (X)QZ (x)
Q=0,
which, by comparing coefficients, gives a system of linearagigns Aq = b), and there-
fore results in an SDP
maximizey (12)
subjecttoAq =Db
Q=0



which could be easily solved using tools like SeDuMi [19].
Let us assume we want to solve the constrained optimizatioioigm:

minimize f (x) (13)
subject togj(x) > 0, i=1,...,M
hj(x) =0, j=1,...,N

It was shown in [15, 14], that an upper bound to the global mimh could be found using
the Positivstellensatz:

f(X) —y=0o(x) + 3 Aj()h;j(X) + 3 0i(x)gi(X) +_sz1,iz(X)gi1(X)gu(x) +... (14
] [ i1

If one finds polynomiald\j(x) and SOSj;(x) according to (14), thegis a lower bound
to the optimization problem of (13). Maximizinggives a lower bound, which gets tighter
when the degree of (14) is increased. If the degree of the highd side of (14) is high
enough, or the lower boung= f(x), theny is the global minimum.

2.2 Poseestimation using SOS

The minimization problem of (6) can be rewritten as a muitat& minimization problem
in four variables. First, we parameterize the rotation @ectusing unit quaterniong =

[QL q2a q37 Q4]:

o _ [0 + 03 — & — o, 20205 + 20104, 20204 — 20103, 2003 — 200, I + 0§ — 0 — G,
20304 + 20102, 20204 + 2010, 20304 — 20102, O + 07 — 5 — 03] -
(15)

Using that representation for rotations, the constraié“SO(3)” can be written in con-
straints on the quaternions: First, the normgaiust be onel(g||? = 1) to represent a
valid rotation. Second, the ambiguity of quaternions mestdsolved:q and —q rep-
resent the same rotation, so we add the constrgint 0. Ignoring the last constraint
would lead to two equally valid solutions, which would datt the SDP solver. With this
guaternion based representation, the pose estimatiotepnalf (6) is recasted as

minimize f(q) (16)
subjecttog; > 0
lal*~1=0,

with f(q) = r"M;r +Mcr +Mc. Using the Positivstellensatz (14) and SOS decomposi-
tion we obtain

maximizey a7
subject tof (q) — y—A(||q]|> — 1) — oqy is SOS
o is SOS

with

o=[1q9"]C [(ﬂ and A=[14"]C m : (18)



HereC;, is a 5x 5 matrix with unknown coefficients. To fulfill the constraint is SOS”
C: has to be a semi-definite positive matrix. The ma@jxs an upper triangular matrix
of size 5x 5 with 15 unknown coefficients. Finally, the minimizatioroptem of (17) can
be written as an SDP like the one in (12). Using a tool for SQfy@mming [15] we
developed a script, which converts the pose estimationi@mft) (M, M; andM) into
an SDP A, b andc). The matrixA, and the vectors andc for the SDP are too large
to be shown here (size & is 266x 70), therefore theMATLAB code which does the
conversion is available at http://www.emt.tugrazgihz/code. The SDP is solved using
SeDuMi [19].

2.3 Special Case: Planar Scene

In cases of a single perspective camera all measuremerihtaygsect in the optical center
of that camera. Therefore, without loss of generalitga# 0, which results ifMc = Ogyx1
andM; = 0. If the scene pointX; are co-planar we can assume, again without loss of
generality, that the points are located in the z-plaXe= [Xxi,Xyi,O]T. Evaluating the
matrix M with such points results in al where the 3-rd, 6-th and 9-th columns and rows
are equal to zero.

This results in two different solutions for the global optim. Let us assume that one
of the global optima is reachedRt = [r1,r2,r3] andt;. Then the second global optimum

is atRy, = [—r1,—r2,r3] and—t;. Therefore, the two statements are equivalent:
. Rl=1] rq, rpr3g 11 .
Two global minima ’ T = Points are co-planaf; =0. (19
g R2 = [_rlv_rzvr?:]a -1 P 2 ( )

In such a situation SeDuMi [19] would not converge to a sirgglution. It reports
that no single solution could be found. To overcome thistktion we need to add a
further constraint which separates the solutions from edbhbr. Since the rotations of
the two solutions differ only in the sign, we decided to use $kgn of the first element
r, = g + 03 — 3 —q3 to distinguish the solutions from each other. Solving batbfems

minimize f(q) minimize f(q) (20)
subject tog; > 0 subject tay; >0
t®+ 0 — da® — cu® > 0 h®+0* — da” —qu® <0
lg*—1=0. lgi*—1=0.

results in two optimal solutions. In the first one the pointsia front of the camera and
in the second one the points are behind the camera. Botlidwutave the same cost (2).
If one knows that the points are exactly co-planar only ontheftwo minimization
problems in (20) has to be solved, because the second sot#iobe obtained from the
first one. If the scene is not exactly planar, or one does nowkmhether the scene is
planar or not, both programs have to be solved. In such a bass-td, 6-th and 9-th
column and row oMM are not exactly zero and therefore the statement of (19) does
hold anymore. In such cases both systems of (20) are solketharbest one is taken as
the global optimal solution. The code for this special (plartase (size ol is 292x 70)
is also available at http://www.emt.tugraz-gpinz/code.
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Figure 2: Numerical Results for global optimal pose estiomatising SeDuMi. (a) con-
sumed CPU time, (b) SeDuMi iterations, (c) erExR), (d) rotation error, (e) number of
valid computations, (f) gap to global minimum.

3 Experiments

The first experiment was performed to analyze the numertedlilgy of the proposed
algorithm. We generated 100 random points normally digteid in thex,y,z interval
[-0.5,0.5] x [-0.5,0.5] x [9.5,10.5]. These points were observed with a general cam-
era model ¢ were normally distributed in the y,z interval [-0.5,0.5] x [—0.5,0.5] x
[—0.5,0.5]). From the measurementswe generate the matric&%, M; andMc; accord-
ing to (7), which are then translated to an SDP program ex@thin section 2.2. The
SDP program is then solved with SeDuMi [19]. SeDuMi is a pelglavailable iterative
SDP solver. To stop the iterations one needs to select aistpppterion. This criterion
is based on the difference between successive iteratioescalthis valueAccuracy of
SeDuMi. For different values of that accuracy, ranging fronT 16 1015, we repeated
the experiment 1000 times.
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Figure 3: Consumed CPU time for different numbers of poiftemputations are per-
formed on a Intel Core 2 Duo 1.6 GHIATLAB R2008a (64-bit), SeDuMi 1.2. (a) 4 to
1000 points, (b) 4 to 100 points.

Fig.2 shows the median, th¢4 and ¥4 quartiles. In Fig. 2(a) the computation time
is reported, which is compared to the number of iteratioril3uB4 needed to reach the
preset accuracy in Fig. 2(b). To reach the highest accunalgyatbout 16 iterations need
to performed and it takes only about 0.3 seconds to reaclatligracy.

In Fig. 2(c) we show the estimated error of the pose estimatioblemE(R) (2) and
in Fig. 2(d) we show the rotation error. The rotation errahisdifference of the estimated
rotation w.r.t. ground truth. There is a linear relatiopsini the interval 107 to 1013,

If we increase the accuracy for SeDuMi above 1bwe reach the accuracy of the used
data-types inside the implementation. If the accuracy g low (larger than 107)
SeDuMi failed to converge to a solution.

This failure of SeDuMi is also reported in Fig. 2(e). Here we siow often SeDuMi
reported a valid solution for the 1000 experiments. For aumcy better than 13
always a valid solution was reported. Therefore, we selet@'° as a good value for
further experiments. Finally, in Fig. 2(f) we see how far tii#ained solution is away
from y. This is a measure of how close we are to the global optimum.

The second experiment was performed to estimate the rumtintie algorithm. We
set the accuracy for SeDuMi to 18 and repeated the above experiment for different
numbers of points (from 4 to 1000). In Fig. 3(a) we see the s@&w time. The dashed
line shows the amount of CPU time for the complete algoritgenérating matrice,
Mc, M¢c, computing the matrices for the SB¥b, c, solving the SDP), whereas the solid
line shows the time, which was consumed by the SDP solvereheigl we can say that
the algorithm is ofO(n) time complexity, while reaching the global optimum. Thedim
needed to solve the SDP problem is close to constant. Theceuse the size of the SDP
problem is constant and does not vary with the number of poi@n the other hand, the
computation of the matriced, M; andM¢: depends linearly on the number of points.

A close look into the range of 4 to 100 points in Fig. 3(b) shdwat solving the SDP
requires more time for fewer points. This could be explaiagdbllows: For three points,
there are up to four valid global optimal solutions [4]. Iratltase the algorithm fails,
due to the fact that it is only valid if there is one solutiohohe adds a fourth point the
up to four solutions are now disturbed by that point, butehame local minima close to
these solutions. For the SDP solver, it takes a lot of timé iirdetects which of thelocal
possible solutions is the global one. Adding more and more points m#keasier for the
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Figure 4: Accuracy of the proposed algorithm for differeaise levels. (a) rotation error.
(b) translation error.

SDP solver tadecide which one is the correct one.

In the third experiment we show the behavior of the algorithumt. noisy measure-
ments for a central camerg & 0). We repeated the previous experiment for different
Gaussian noise levels in the measurements. We notice a telationship between noise
level and the accuracy of the rotation in degrees Fig. 4(d)fanthe the accuracy of the
translation (in percent: 100 |t —tground trut}/[tground trutd) Fig. 4(b).

4 Conclusion

In this paper we have proposed a new globally opti®@l) algorithm for the PnP prob-
lem. The algorithm was developed using a cost function folegel camera models. The
minimization of that cost function can be written as a senfinite positive program,
which is efficiently solved. The main difference to othertgdboptimization algorithms
is the avoiding of a branch and bound algorithm, which resuala fast computation. We
believe that the method of expressing the minimization asmaaf squares problem also
has a high potential for other Computer Vision algorithrit® ktructure from motion.
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