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Abstract 

This paper presents a robust phase correlation technique and a 
compound phase correlation method for reliable sub-pixel image feature 
matching and motion estimation. A phase fringe filter and a highly robust 
estimator QMDPE are used to improve the fitting accuracy of the phase 
difference plane in Fourier domain. A compound phase correlation method 
is proposed to identify and decompose the multiple motion patterns in 
phase difference matrix at sub-pixel accuracy. This compound phase 
correlation method is the breakthrough in improving the robustness of 
phase correlation based feature matching around motion boundary or depth 
discontinuity. With the robust phase correlation and the compound phase 
correlation combined algorithm, the optical flow estimation and stereo 
matching achieved remarkable accuracy, especially around the areas with 
the motion boundary or depth discontinuity. 

1 Introduction 
Motion provides rich information for understanding the scene in an image sequence. An 
accurate estimation of motion in an image sequence is a crucial step in many computer 
vision and image processing applications such as image registration, multi-frame super 
resolution and stereo matching. In recent years, phase correlation feature matching 
method has been a popular choice in estimating the global or local translational motions 
between two similar images due to its remarkable accuracy and its robustness to 
uniform variations of illumination and signal noise in images [1].  

The original phase correlation method [2] is known to identify integer pixel 
displacement. Several Fourier domain methods [3] [4] [8] and closely related spatial 
domain variations [1] have been proposed for estimating the translational shift with sub-
pixel accuracy between image pairs. Stone et al. [3] investigated the effects of aliasing 
on the shift estimation and proposed a direct Fourier-based algorithm for sub-pixel 
image registration, in which, the translational parameter is directly estimated in Fourier 
domain through a least-squares fitting (LSF) to a 2D phase difference data set. Foroosh 
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et al. [1] claimed that Stone’s approach is rather inaccurate since it often requires 
unwrapping the noisy 2D phase difference data and then fitting the unwrapped data. 
Alternatively, they extended the original phase correlation method [2] to sub-pixel 
accuracy through analytic expressions for the phase correlation of down-sampled 
images. Hoge [4] demonstrated that the translational shift between two images can be 
obtained by finding the rank-one approximation of the phase correlation matrix through 
the singular value decomposition (SVD) method. Then, the sub-pixel estimates of 
vertical and horizontal shifts can be derived independently from the left and right 
singular vectors. The accuracy of the translational shift estimation through the SVD 
based rank-one approximation of phase correlation matrix is much higher than Foroosh 
et al.’s method [1]. However, the computation complexity of the SVD operation of a 
large size matrix is very high. 

Motivated by the strengths and limitations of these existing phase correlation 
methods for sub-pixel translational motion estimation and registration, this paper first 
addresses a robust phase correlation technique achieving reliable sub-pixel image 
feature matching and motion estimation at high speed. We propose to use a phase fringe 
filter [5] and Quick Maximum Density Power Estimator (QMDPE) robust techniques 
[6] in the direct Fourier-based phase correlation algorithm. We first apply the phase 
fringe filter to reduce the noise in the phase correlation difference matrix, and thus 
make the 2D unwrapping reliable. We then use the highly robust QMDPE technique to 
obtain the best fitting estimation of 2D unwrapped phase plane.  

Phase correlation techniques are often applied locally for motion flow estimation and 
disparity estimation in stereo matching [7] [8]. However, its degraded performance 
around motion boundaries or depth discontinuity areas is well recognised [9] [10], 
which is also a challenge to most of the existing motion estimation methods. Noting the 
problem of phase correlation based motion estimation around motion boundary or depth 
discontinuity areas, this paper also investigates the characteristics of phase correlation 
of the image pair with complicated motion property. We proposed and designed a 
compound phase correlation (CPC) method to identify and decompose the multiple 
motion patterns in phase correlation matrix at sub-pixel accuracy, which is the 
breakthrough in improving the robustness of phase correlation based feature matching 
around motion boundary or depth discontinuity. 

This paper is organised as follows. In the next section, we describe a direct Fourier 
based robust phase correlation technique for translational motion estimation. In Section 
3, we address the compound phase correlation method for multiple motion 
decomposition and motion estimation with sub-pixel accuracy. Section 4 presents the 
combined phase correlation based algorithm for optical flow estimation and disparity 
estimation for stereo matching. Experimental results are then given in Section 5. Finally 
in Section 6 some concluding remarks are provided. 

2 Robust Phase Correlation Technique 
Phase correlation provides straight-forward estimation of rigid translational motion 
between two images, which is based on the well-known Fourier shift property: a shift in 
the spatial domain of two images results in a linear phase difference in the frequency 
domain of the Fourier Transforms (FT). Given two 2D functions g(x,y) and h(x,y) 
representing two images related by a simple translational shift a in horizontal and b in 



vertical directions, and the corresponding Fourier Transforms are denoted G(u,v) and 
H(u,v). Thus, 
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If G(u,v) and H(u,v) are continuous functions, then the inversed Fourier Transform 
(IFT) of Q(u,v) is a Delta function. The Delta function peak identifies the integer 
magnitude of the shift between the pair of images [2]. To achieve the translation 
estimation at sub-pixel accuracy, a common approach is to oversample images g(x,y) 
and h(x,y) to sub-pixel level before the FT of phase correlation operations. This 
however will increase the computing load dramatically. Many researchers looked for a 
direct solution in frequency domain based on the phase correlation matrix defined in 
(2). As the magnitude of Q(u,v) is normalised to 1, the only variable in (2) is the phase 
difference defined by au+bv, where a and b are the horizontal and vertical magnitudes 
of the image shift between g(x,y) and h(x,y). If we can solve a and b accurately based 
on the phase correlation matrix Q(u,v), then the non-integer translation estimation at 
sub-pixel accuracy can be achieved without applying IFT. Such direct frequency 
domain approaches [3] [4] has been proved more accurate and faster than that based on 
the Delta function method.  

The phase difference angle c= au+bv in (2) is simply a planar surface through the 
origin in u-v coordinates defined by coefficients a and b. Thus a complicated problem 
of complex numbers in frequency domain becomes a simple issue of finding the best 
2D fitting of the phase difference angle data in Q(u,v) to a plane of phase difference in 
the coordinates of u and v. The phase shift angle c is 2π wrapped in the direction 
defined by a and b. Any a 2D fitting for c is not possible without a 2D unwrapping. 
However, 2D unwrapping on the phase angle data in the Q(u,v) is often unreliable and 
results in failure of finding a and b correctly [1] [4]. This is largely because of the 
noisier data of Q(u,v). To improve the 2D fitting method, we recognized that the key 
issues are: to reduce the data noise before unwrapping and to refine the fitting 
technique. 

As the phase angle data in the Q(u,v) is 2π wrapped, ordinary smoothing filters 
cannot be applied directly to reduce the noise of such discontinuous periodical data. We 
implemented a phase fringe filtering technique [5] into the 2D fitting method as below:  

1. Denote θ(u,v) as the phase angle at position u,v in the phase correlation matrix 
Q(u,v).  

2. The sinθ and cosθ are continuous functions of θ(u,v), a smoothing filter can 
therefore be applied to these functions. 

3. Derive the filtered phase angle ),( vuθ  from smoothing filtered sinθ and cosθ: 
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The window size of the smoothing filter used must be small in comparison to the half 
wavelength of sinθ and cosθ. For reducing the aliasing error and edge effects in the 
direct Fourier based method, high frequency components of the phase correlation 



matrix should be masked out, and only the lower frequency part is kept for the 2D 
fitting operation [3] [4]. 

In stead of using LSF, a robust fitting technique QMDPE [6] is finally applied to find 
the best fitting estimates of the unwrapped phase angle data, which often is 
contaminated by the incorrectly unwrapped data and contain multi-structure mode. It is 
noticed that the robust estimator QMDPE can tolerate more than 80% of outliers, and it 
has been proved more robust than another common robust estimator RANSAC [6]. The 
QMDPE method repeatedly selects a random set of three points within the unwrapped 
phase angle data and gets the plane transformation model induced by them. The plane 
model with the largest density power value can be obtained through a mean shift 
procedure, and such set of unwrapped phase angle data is chosen to represent the 
statistical inliers. A least-squares solution finally applies to these inliers to form the 
final estimates of the phase angle plane. The benefit of using the QMDPE robust 
estimator is that the best estimate of the translational shifts a and b in (2) can be 
obtained from the noisy phase difference data set. 

An example in Figure 1 shows the effectiveness of the robust phase correlation based 
translational motion estimation method for sub-pixel image registration across different 
spectral bands. A image pair of two different spectral bands, bands 1 (blue) and 5 (short 
wave infrared), extracted from a 30 m resolution Landsat-7 ETM+ scene is shown in 
Figure 1(a) and 1(b) respectively. The correlation between the two bands is 0.69. One 
of the images is shifted horizontally by 13.33 pixels to the left and vertically by 10.00 
pixels up in relation to the other. As shown in Figure 1(c), the phase correlation matrix 
data become quite noisy because of the low correlation between the two images. Both 
of the Least-Square Fitting (LSF) and QMDPE algorithms failed in the first attempt 
without filtering the noise phase angle data. Then the phase fringe filter with filter size 
15×15 pixels was applied, which has improved the phase correlation data significantly 
as illustrated in Figure 1 (d) and 1(e), and ensures a successful 2D unwrapping result 
shown in Figure 1(f). Only after the filtering, the LSF and robust QMDPE algorithms 
succeeded in measuring the image frame shift at sub-pixel accuracy. As comparison, the 
phase fringe filter with small size 5×5 pixels was also applied and the filtered result is 
shown in Figure 1(g). The filtered result is not as good as that in Figure 1(d), and some 
errors exist in the corresponding unwrapped phase angle data shown in Figure 1(h). 
However, the QMDPE robust fitting method still obtained very good estimates. LSF 
cannot find the good fitting estimates in this case. The experimental results shown in 
Table1 and Table 2 indicate that the QMDPE 2D fitting algorithm achieved the best 
overall accuracy with different fringe filter size.  

 
True Shifts LSF QMDPE 

x: 13.3333 13.2016 13.2056 
y: -10.00 -9.9324 -9.9404 
Table 1: Translational shift estimates with fringe filter size 15×15. 
 
 
True Shifts LSF QMDPE 
x: 13.3333 13.2466 13.2420 
y: -10.00 - 9.3308 - 9.9346 
Table 2: Translational shift estimates with fringe filter size 5×5. 



 

3 Compound Phase Correlation based Multiple 
Motion Decomposition 
The phase correlation difference matrix around an area with multiple motions tends to 
be rather messy with overlaid and interfered multiple fringe patterns, which cannot be 
unwrapped properly. Our investigation indicates that these overlaid fringe patterns with 
different orientations and frequencies correspond to the each motion mode within this 
area respectively. Identification and decomposition of these patterns thus enable 
accurate local motion estimation around motion boundaries or depth discontinuities. 

It is a difficult task to identify and decompose the multiple motion patterns directly in 
the phase correlation matrix. However, if we apply the inverse Fourier transformation to 
the phase correlation matrix, the multiple motions can be clearly separated as different 
Delta function impulses. The corresponding motion can then be easily estimated based 
on the locations of these Delta function impulses, but only at a pixel level accuracy. 
This is so called Delta function based phase correlation method [2]. Foroosh et al. [1] 
proved that a peak of the Delta function determines the integer part of the 
corresponding motion while the close neighborhood of the peak determines the sub-
pixel part of the motion. In order to accurately and robustly estimate the corresponding 
motions, we designed a compound phase correlation (CPC) method which benefits both 
advantages of easy decomposition of multiple motions from Delta function method in 

  

  
 

Figure 1:  Image (a) and (b) are Landsat-7 ETM+ image bands 1 and 5 with inter 
band correlation of 0.69. Image (b) is artificially shifted to the left by 13.3333 pixels 
and up by 10 pixels. (c) The phase difference matrix. (d) The filtered phase 
difference matrix (filter size=15). (e) 3D view of the central part of the filtered phase 
difference matrix (filter size=15). (f) 3D view of the unwrapped phase difference 
matrix (filter size=15). (g) The filtered phase difference matrix (filter size=5). (h) 3D 
view of the central part of the filtered unwrapped phase difference matrix (filter 
size=5). 



spatial domain and sub-pixel accuracy of the direct phase correlation technique for 
individual motion estimation in Fourier domain.  

For each decomposed motion, we should mask out all other parts of the 2D Delta 
function impulse and only keep the immediate neighbourhoods of the dominant peaks, 
and then apply Fourier transformation to each peak and its immediate neighbour to 
obtain a sub-matrix of phase correlation that corresponds only to one dominant motion. 
Finally, the simple 2D LSF fitting algorithm is applied to each of the phase correlation 
sub-matrices to obtain of the multiple motion estimations with sub-pixel accuracy. We 
can simply repeat the above steps to achieve accurate estimate of each of the multiple 
motions within a large scanning window. It should be noted that the general CPC 
method requires linking each Delta function peak to its corresponding motion, which is 
not an easy task if the scanning window contains complex motion modes. For the 
reason of easy operation and algorithm efficiency, we simply presume that the motion 
at the centre of each window can be derived from the first dominant motion mode. In 
practice, this simple approach achieves good performance in most cases except around 
some corners of multiple motion boundaries, which is also a big challenge to most 
exiting motion estimation techniques. 

Figure 2 shows an example of motion decomposition around motion boundary 
through the proposed CPC method. We inserted a picture of a tank model into different 
positions in a sand desert image pair, which is generated by artificially shift one image 
by 7 pixels (to left) in horizontal and 3 pixels (down) in vertical directions. The tank 

 

     

 
 

Figure 2:  Motion decomposition through the proposed CPC method. An image pair 
(a) and (b) show a moving tank in a background in motion. (c) The phase correlation 
matrix between the two blue rectangle areas in the image pair. (d) Two distinctive 
peaks of the Delta function that correspond to the tank motion and the background 
motion respectively. (e) The decomposed phase correlation matrix of the moving 
tank. (f) The decomposed phase correlation matrix of the moving background. 



position change between Figure 2(a) and Figure 2(b) is 12 pixels (to left) horizontally 
and 5 pixels (up) vertically. We chose a window area around motion boundary (blue 
rectangle) in each of the image pair for the motion decomposition test. The size of the 
blue rectangle is 128×128. The phase correlation matrix between the two blue rectangle 
areas in the image pair is shown in Figure 2(c), while Figure 2(d) illustrates that the 
inverse Fourier transformation of the phase correlation matrix resulted in two 
distinctive Delta function peaks corresponding to the tank motion and the background 
motion respectively. Figure 2(e) and 2(f) show the decomposed phase correlation 
matrices of the moving tank and the background. The motions of tank and the 
background were accurately estimated from the clean and sharp fringe patterns of the 
corresponding phase difference matrix using the simple LSF phase correlation 
technique. In addition, we also down-sampled the image pair by two for further test 
around the same motion boundary area but with window size 64×64. The motion 
estimates of tank and background are shown in Table 3. This example indicates that the 
CPC method is able to achieve multiple motion decomposition and estimation at sub-
pixel accuracy. 

4 Combined Phase Correlation based Local 
Motion Estimation 
There are some limitations to apply the proposed robust 2D fitting based phase 
correlation method locally for optical flow estimation. Here, the scanning window size 
is crucial for the quality of the motion estimation. If the window size is too small, then 
the number of data points will be insufficient to achieve accurate measurement of the 
extracted feature shift, while if it is too large it may include multiple motions, especially 
around depth discontinuity areas for stereo matching.  

The proposed novel CPC method has much better performance for optical flow 
estimation around motion boundaries or depth discontinuity than the original robust 2D 
fitting technique, but it is generally less efficient and slightly less accurate in normal 
areas without motion boundaries or depth discontinuity. So we designed a combined 
motion (disparity) estimation algorithm that employs the corresponding advantages of 
the both techniques. The key issue of this newly designed combined motion estimation 
algorithm is to locate the motion boundaries where the phase correlation data are messy, 
and apply the CPC for motion (disparity) estimation only in these selected areas while 
keeping the original QMDPE based robust technique as the default phase correlation 
engine for most parts of the image. This simple and effective automatic processing 
procedure comprises two steps: 

 Tank Background 
True shifts (-12, -5) (-7, 3) 
Estimates (128×128) (-11.9723, 4.9621) (-6.9060, 2.9754) 
True shifts (-6, -2.5) (-3.5, 1.5) 
Estimates (64×64) (-5.984, -2.572) (3.3589, 1.681) 
 
Table 3: Results of multiple motion estimation through CPC technique 



1. Carry out the raster scan of the image pair using a moving window to estimate the 
motion of each small window with the robust QMDPE phase correlation 
algorithm. 

2. In each window, the robust fitting technique QMDPE is applied to find the best 
fitting estimates of the unwrapped phase angle data. However, the estimation 
would be poor around motion boundaries where the phase angle data are 
contaminated by the incorrect unwrapping and multi-structure mode because of 
poor correlation or high noise level. If the ratio of the outliers to the inliers of the 
best fitting estimation of plane model exceeds a certain threshold, the 
corresponding motion estimate is supposed to be poor, and then the CPC 
technique is used to determine the dominant motion within the phase correlation 
window. 

In the step two above, we proposed to use a ratio of outliers to inliers derived from 
the robust QMDPE 2D fitting in frequency domain for quality assessment on the phase 
correlation based motion estimation. Beside this, the linear regression correlation 
coefficient between the actual phase difference data and the robust estimates of the 
phase difference plane can also be employed to assess the quality of the phase 
correlation based motion estimation.  

5 Experimental Results 
Figure 3(a) and 3(b) show a pair of tank images generated in a similar way as described 
in Figure 2, which simulate a vertical view sequence of a moving military target in a 
sand desert background (no motion). The tank in the image on the right is shifted 2.5 
pixels to the left and 3 pixels upward. In order to test the robustness of the proposed 
method to illumination variations, both of the brightness and contrast of the image pair 
have been changed. The image pair was scanned with 32×32 window to compute the 
optical flow field. The estimated optical flow field through the robust 2D fitting phase 
correlation technique without motion decomposition is shown in Figure 3(c) and its 
corresponding magnitude image is shown in Figure 3(f). Figure 3(d) shows that the low 
quality optical flow data in Fig 3(c) have been masked off with the robust inliers scale 
estimation method, and can be refilled with the proposed PCP technique. The estimated 
optical flow field using the robust 2D fitting and CPC combined algorithm is shown in 
Figure 3(e) and its corresponding magnitude image is shown in Figure 3(g), which 
indicate that the proposed robust 2D fitting and CPC combined method has successfully 
computed the optical flow field with sharp motion edge from an image pair with 
illumination variation, which is a big challenge to most existing techniques. 

One of important applications of CPC combined optical flow estimation algorithm is 
to improve the accuracy of disparity measurement across steep slopes in very narrow 
baseline stereo image pair for stereo matching.  

One image of a stereo pair of images from CMU Castle sequence is shown in Figure 
4(a). The disparity map generated using the CPC based combined approach is shown in 
Figure 4(b). For comparison, the disparity map from our robust phase correlation 
technique without motion decomposition is shown in Figure 4(c). The test results are 
self evident; the new method has obviously improved performance, especially in 
disparity estimation around the sharp edges of buildings and walls. Figure 4(d) is a 3D 
perspective view of Castle image reconstructed from the estimated disparity map. It 



demonstrates that fine details and depth discontinuity can be quite effectively 
recovered.  

 

6 Conclusion 
The analyses and experimental results presented in this paper have demonstrated that 
the proposed phase correlation based motion estimation scheme, which combines the 
robust phase correlation technique and CPC method, are able to achieve remarkable 

 
 

Figure 3:   (a) and (b) An image pair with a moving tank in a still desert background. 
(c) The computed optical flow field from the robust 2D fitting technique. (d)  The low 
quality optical flow data in (c) have been masked off with the robust inliers scale 
estimation method. (e) The estimated optical flow field through our robust 2D fitting 
motion estimation and CPC combined algorithm. (f) The magnitude image of the 
optical flow field (c). (g) The magnitude image of the flow field  (e). 

 
 
Figure 4:  Experiment results of disparity estimation from a stereo image pair of 
CMU. (a) One image of the stereo image pair from CMU Castle sequence. (b) The 
disparity measurement image produced by the CPC based combined approach. (c) 
The disparity measurement image produced by the simple robust phase correlation 
technique. (d) The 3D perspective view of Castle image based on the CPC derived 
disparity measurement image in (b).  



accuracy in most synthetic and real images from different spectral bands. The strengths 
of the proposed technique are its algorithm simplicity, its robustness to illumination 
change and its good performance around motion boundaries or depth discontinuities. 
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