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Abstract

We present a novel approach to matching 3D faces with expressions, de-
formations and outliers. The matching is performed through an accurate and
robust algorithm for registering face meshes. The registration algorithm in-
corporates prior anthropometric knowledge through the use of suitable land-
marks and regions of the face to be used with the Iterative Closest Point (ICP)
registration algorithm. The localization of landmarks and regions is achieved
through the fitting of a 3D Point Distribution Model (PDM) and is indepen-
dent of texture, pose and orientation information. We show that the use of
expression-invariant facial regions for registration and similarity estimation
outperforms the use of the entire face region. Evaluation is performed on the
challenging GavabDB database and we achieve 93.7% rank-1 recognition
with an overall retrieval accuracy of 91.1%.

1 Introduction
The matching of 3D face meshes requires accurate comparison of surface properties from
different meshes. This task can be impaired when meshes have deformations (due to
expressions or medical conditions) or outliers (due to the acquisition process). A common
approach to match 3D meshes is through the Iterative Closest Point (ICP) algorithm [3]
for rigid registration. As ICP is based on the closest point associations from one mesh
to the other, in the presence of deformations and outliers its performance degrades due to
global minima. Moreover, ICP requires roughly aligned meshes in order to converge in
terms of the mean square error (MSE). Many variants to the original ICP algorithm have
been proposed to improve speed and convergence [2, 22], but without removing the above
mentioned limitations. Other global registration methods exist [8, 9, 11], some of which
use the ICP, but are also inappropriate in the presence of deformations and outliers.

The localization of specific anthropometric landmarks and regions on face meshes
often plays an important part in these applications. Landmarks can aid the ICP algorithm
in achieving rough alignment of meshes, and by themselves provide valuable semantic
information. In biometric applications, landmarks are often instrumental in the generation
of signatures for faces [19] and isolation of expression invariant regions for matching [4].
However, the dependence on prior knowledge of feature map thresholds, orientation and
pose is evident in most existing methods for landmark localization on meshes [4, 5, 14].
The segmentation of faces is also important prior to analysis when the mesh includes other
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Figure 1: Example highlighting limitations of the conventional ICP approach: (a-b) Sam-
ple person scans with different expressions and amount of non-facial regions; (c) result of
distance estimation between the meshes post-registration, showing inaccurate regions of
change and introduction of errors due to non-facial regions (red and blue regions).

body parts and outliers. In [12] an ICP based 3D face recognition approach is presented,
where the face is first detected and segmented prior to registration. The face detection
is performed by finding the nose tip and segmentation is done through a cropping sphere
centred at the nose tip. This approach is highly restrictive to the database used as each
input mesh is assumed to contain only one frontal face. Moreover, the cropping sphere
has a fixed radius and hence the segmentation is not robust to scale variance.

In this paper, we propose a robust algorithm to perform effective rigid registration of
face meshes. We localise landmarks on the face based on the fitting of a Point Distribution
Model (PDM) [17] which allows us to work independently of pose and orientation infor-
mation, and eliminates the need of a texture map. Face segmentation is then performed
with a cropping sphere that is scaled and positioned using the localised landmarks. The 3D
face registration algorithm then incorporates prior anthropometric knowledge in achiev-
ing fine registration of meshes. The prior knowledge in the registration is included using
suitable landmarks and regions of the face to be used in the ICP registration.

2 Problem definition
We represent a 3D face dataset as ΦΦΦ =

{(
ΦΦΦ

1
N1

,C1
)
,
(
ΦΦΦ

2
N2

,C2
)
, ...,

(
ΦΦΦ

M
NM

,CM
)}

, where

ΦΦΦ
i
Ni

=
{

Ψi
1,Ψ

i
2, ...,Ψ

i
Ni

}
are the Ni faces of a person Ci with M people in the dataset. Then
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of the
person, using only geometric information while being independent of texture, orientation
and pose information.

Figure 1 (a-b) shows two face meshes of a person with different expressions and
amount of non-facial regions captured. Non-facial regions here refer to other body parts
and clothing. We applied the conventional ICP algorithm using vertices sampled from
the entire mesh and computed the distance between the meshes post-registration (a de-
tailed explanation of the distance estimation algorithm is presented in Sec. 5). The results
(Fig. 1 (c)) show that the presence of deformations (due to expression change) and non-
facial regions causes a poor registration. Inaccurate regions of change can be noticed on
the forehead, with a large amount of error introduced by the non-facial regions. We aim
to overcome these limitations of the conventional ICP approach as described below.



3 Facial model construction
We use a model based on a Point Distribution Model (PDM) [6] to detect landmarks and
segment the face and facial regions for the registration algorithm. The PDM is a param-
eterized model, ΩΩΩ = ϒ(b), where ΩΩΩ = {ω1,ω2, ...,ωN}, with ωi = (xi,yi,zi) representing
each landmark. The vector b holds the parameters which can be used to vary the shape
and ϒ defines the function over the parameters. To this end, a training set of L samples
with N landmarks representing the region of interest are used. We then have L training
shapes where each kth shape is a 3×N element vector, ΩΩΩ

k =
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2 , ...,ωk
N
}

.
Training shapes are aligned and scaled to eliminate global transformations, so that

statistical analysis is carried out only on the shape variations. Procrustes analysis [10]
is used to align the training shapes to their mutual mean in a least-squares sense via
similarity transformations. This minimises DDD, which is the sum of distances of each
shape ΩΩΩ

kkk to the mean ΩΩΩ = 1
L ∑

L
k=1 ΩΩΩ

kkk, i.e., D = ∑
N
i=1 |ωωωkkk

iii −ωωω iii|2. At each iteration, ΩΩΩ is

scaled such that
∣∣∣ΩΩΩ∣∣∣ = 1. Using PCA, the variations of the shape cloud formed by the

training shapes in the (3LN) - dimensional space are estimated along the principal axes.
The principal axes and corresponding variations are represented by the eigenvectors and
eigenvalues obtained from the covariance ZZZ of the data, computed using

Z =
1

L−1

L

∑
k=1

(ΩΩΩkkk −Ω)(ΩΩΩkkk −Ω)T . (1)

If φφφ contain the t eigenvectors corresponding to the largest eigenvalues, then any shape
similar to those in the training set can be approximated using

ΩΩΩ ≈ Ω+φφφbbb, (2)

where φφφ = (φφφ 111|φφφ 222| . . . |φφφ ttt) and b is a t dimensional vector given by b = φ T (Ω−Ω). The
value of t is chosen such that the model represents 98% of the shape variance, ignoring
the rest as noise [6]. The mean shape is obtained when all parameters are set to zero.

4 Model fitting
The PDM ΩΩΩ is fitted onto a new mesh Ψi by performing similarity transformations of
the model, estimated using three control points of the mean shape ΩΩΩ, which are the inner
eye points (ωωωrrr and ωωω lll) and the nose tip point (ωωωnnn), with {ωωωrrr,,,ωωω lll ,,,ωωωnnn} ∈ ΩΩΩ. We isolate
candidate vertices on a face mesh using curvature-based feature maps and select the inner
eye and nose tip areas as they can be robustly isolated from other vertices. In this section
we will discuss the feature extraction and preprocessing to isolate the candidate vertices.
In order to characterize the curvature property of each vertex on the face mesh we compute
two feature maps, namely the shape index and the curvedness index [7]. These maps are
derived based on the principal curvature values, κ1(.) and κ2(.), at all the vertices of the
mesh using differential geometry. The shape index, ρ , at a vertex vi, is defined as

ρ(vi) =
1
2
− 1

π
tan−1

(
κ1(vi)+κ2(vi)
κ1(vi)−κ2(vi)

)
, (3)
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Figure 2: Example scan showing feature maps used to isolate candidate vertices and
example of model fitting: (a) shape index, (b) curvedness index, (c) candidate vertices
(regions in green are nose tip vertices and regions in red are eye vertices), (d) fitted model.

where κ1(vi)≥ κ2(vi) and ρ(.) ∈ [0, 1]. While ρ(.) can describe subtle shape variations
from concave to convex thus providing a continuous scale between salient shapes, it does
not give an indication of the scale of curvature. For this reason the curvedness of a surface
is introduced. The curvedness of a surface, γ(.), at a vertex vi, is defined as

γ(vi) =

√
κ2

1 (vi)+κ2
2 (vi)

2
. (4)

We compute the low-level feature maps of Eq. 3 and Eq. 4 after Laplacian smoothing to
reduce outliers arising from the scanning process.

To reduce the computational overhead through the reduction of outlier candidate ver-
tices, the original mesh is first decimated [18]. Then the feature maps are averaged across
vertex neighbors according to

ρ̃(vi) =
1
P ∑

p∈P(vi)
ρ(vp), γ̃(vi) =

1
P ∑

p∈P(vi)
γ(vp), (5)

where P(vi) is the set of P neighboring vertices of vi.
If γ̃(.) > γs, then vi is in a salient high-curvature region. The condition ρ̃(.) < ρe

identifies concave regions; while ρ̃(.) > ρn identifies convex regions. We can therefore
relax thresholds to segregate candidate inner eye vertices from the nose tip ones (Fig. 2
(c)). The thresholds γs = 0.1, ρe = 0.3 and ρn = 0.7 were found to be adequate for the
entire database, with second-order neighborhoods for feature averaging and a decimation
of 80%. A further reduction of outlier candidate combinations is performed by checking
the triangle formed by each combination of 2 inner eye and 1 nose tip vertices. A plausible
inner eye-nose triangle should be acute angled with the squared length of each side being
smaller than the sum of the squares of the two other sides.

To transform the model ΩΩΩ we use as target points plausible combinations of the can-
didate inner eye vertices and candidate nose tip vertices on Ψi. Next the remaining points
of ΩΩΩ are moved to the closest vertices on Ψi, ΩΩΩ is then projected back into the model
space and the parameters b are updated. Based on this exhaustive search over the isolated
candidate vertices, the transformation exhibiting the minimum deviation from the mean
shape is chosen as the fit for the model (Fig. 2 (d)).
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Figure 3: Face segmentation results on the subject scans from Fig. 1, showing effective
removal of outlier body parts and clothing.

5 Face registration and similarity calculation
Prior to registration, the face needs to be segmented from other outlier body parts or
clothing. Segmentation is performed by placing a sphere of radius r with center at the
midpoint of the line joining the nasal bridge and nose tip. The intersection boundary of
the face and the sphere is then used to segment the face [12]. To account for different
sizes of faces, the value of r is set in proportion to the size of the fitted model. A value of
r = 2.6 l was found to be appropriate for all scans in our database, where l is the Euclidean
distance between the nose tip and nasal bridge landmarks (nose length). Examples of face
segmentation results is shown in Fig. 3, corresponding to the segmented faces of the
subject shown in Fig. 1.

Face registration is based on rigid registration with prior anthropometric knowledge,
which utilizes an adaptation of the ICP algorithm. The algorithm uses the detected land-
marks from the PDM fitting to first perform a coarse registration. Coarse registration is
based on the best fit mapping in a least squares sense. The landmarks are then used to
segment specific stable regions on the face, which are robust to expressions and facial
deformations. These regions are finally used to achieve fine registration.

Stable regions (RS) include the region around the inner eye points, the nasal bridge
between these points and around the eyebrow region (Fig. 4 (a)). The nose region (Fig. 4
(b)) is also relatively stable to most natural expressions. Vertices from these regions are
localised using the fitted model and selected for ICP registration. We will refer to this
approach as Selective-ICP (S-ICP).

Once the reference scan and the test scan are registered, the next step is to evaluate the
distance between the two meshes as a measure of similarity. To this end, the symmetric
Hausdorff distance [1] is used. Let Ψ and Ψ′ be the two facial meshes and ∂ (vi,Ψ

′) be
the distance between a vertex vi ∈ Ψ and Ψ′. If we define

∂ (vi,Ψ
′) = min

v′i∈Ψ′
(
∥∥vi− v′i

∥∥), (6)

then the Hausdorff distance, ∂ (Ψ,Ψ′), is given by

∂ (Ψ,Ψ′) = ∑
vi∈Ψ

max[∂ (vi,Ψ
′)], (7)

and the symmetric Hausdorff distance, ∂s, is then given by

∂s(Ψ,Ψ′) = max[∂ (Ψ,Ψ′),∂ (Ψ′,Ψ)]. (8)
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Figure 4: Regions used for registration and distance estimation: (a) stable regions RS
composed of the region around the inner eye points, the nasal bridge and eyebrow region;
(b) nose region; (c) combination of RS and the nose region; (d) Regions R1 −R6 used in
the distance estimation.

Table 1: Comparison of rank-1 retrieval accuracy on using R1, R2 and R3 in the similarity
estimation, post-ICP registration

Regions R1 R2 R3 R1 +R2 R1 +R3 R2 +R3 R1 +R2 +R3
Rank-1

74.9% 69.1% 85.2% 78.0% 84.5% 82.7% 85.9%recognition

The Hausdorff distance estimation is based on different regions of the face towards
finding the most robust facial regions to be used in the similarity estimation. The face was
divided into 6 regions (R1 −R6), separating the forehead, eyes, nose, cheek, mouth and
chin, as shown in Fig. 4 (d). For a given selection of P regions SR ∈ Ψ and S′R ∈ Ψ′, the
similarity ∆ is defined as,

∆ = max
[

∑
vi∈SR

max
[
∂
(
vi,Ψ

′)], ∑
v′i∈S′R

max
[
∂
(
Ψ
′,v′i)

]]
. (9)

We first tested the rank-1 recognition accuracy on applying the ICP algorithm over the
cropped face and using the 6 facial regions in the similarity estimation. The single region
that lead to the worst retrieval is the mouth region (R5), which is the most affected by
variations in expressions. The best results were provided by the forehead, eyes and nose
regions (R1, R2 and R3) and their combinations. Table 1 shows the rank-1 recognition
accuracy obtained with the use of these regions.

6 Experimental results
We evaluate the performance of the proposed registration approach for 3 region configu-
rations (Fig. 4 (a-c)), and compare it with the conventional ICP approach. We refer to the
configuration with RS as S-ICP1, with R3 as S-ICP2 and with the combination of both re-
gions as S-ICP3. The GavabDB database [13] is used to evaluate the proposed approach.
The dataset consists of 427 face scans, corresponding to 7 scans of 61 subjects, and pro-
vides a challenging collection with samples having varying degrees of expressions, poses
and presence of other body parts and clothing. For the detection of landmarks on the face
meshes, the PDM ΩΩΩ is generated from the BU-3DFE [21] database and the corresponding
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Figure 5: Rank-1 recognition (left) and retrieval accuracy (right) obtained using the fore-
head (R1), eyes (R2) and nose (R3) regions in the similarity estimation.

ground-truth landmarks provided with the database. We use 48 ground-truth landmarks
from the eyebrows, eyes and nose regions and include an additional landmark at the nose-
tip. Our training set is composed of landmarks from 150 faces, corresponding to 25 scans
from 6 individuals each. The 25 scans corresponds to five expressions (anger, disgust,
fear, happiness, sadness and surprise) with four degrees (intensities) of expressions and
one neutral expression.

The performance of the approaches is evaluated in terms of recognition and retrieval
accuracies. Recognition here refers to the accuracy of the retrieved rank-1 identity, while
retrieval refers to accuracy of retrieving faces of the same person with most similarity.
The retrieval accuracy is measured using the average dynamic precision (ADP) [20]. The
ADP is defined as

ADP =
1
S

S

∑
i=1

Ti

i
, (10)

where Ti is the number of true positives, with Ti ≤ i, and S is the scope size which refers to
the total number of expected true positives. S is set to 7 in our experiments since we have
7 samples per person. For example, if for a given query the retrieved results correspond
to [1, 1, 0, 1, 1, 0, 1] until rank-7 (where 1 is a true positive and 0 is a true negative), the
ADP = 1+1+0.67+0.75+0.8+0.67+0.71 = 5.56/7 = 0.794.

Figure 5 shows the rank-1 recognition and retrieval accuracy in terms of the ADP of
the 4 approaches. The overall best results were obtained on using the nose region for
both the registration (S-ICP2) and similarity estimation (R3), with a rank-1 recognition
rate of 93.7% and an ADP of 91.1%. For ICP the nose region is the most robust with
a recognition rate of 85.2% and an ADP of 83.1%. In the S-ICP1, the region combina-
tion of the forehead, eyes and nose (R1 + R2 + R3) gives the best result with recognition
rate 87.4% and ADP 83.9%. Finally, for S-ICP3 we again achieve most robustness with
regions (R1 + R2 + R3),with recognition rate 87.8% and ADP 83.9%. We observe a cor-
relation between the regions used in the registration and subsequently in the similarity
estimation. In S-ICP2 the nose is used to register the faces and in turn proves to be the
most robust in estimating the distances. In S-ICP1 and S-ICP3, parts of the forehead, eyes
and nasal bridge is used to register the faces and these regions also proves most robust in
the similarity measure. However, recognition and retrieval using R3 outperformed the
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Figure 6: Registration results using various region configurations and comparison with
ICP: (a) ICP; (b) S-ICP1; (c) S-ICP2; (d) S-ICP3.

other regions in terms of robustness.
Figure 6 shows example results with estimated distances, post-registration, with the

4 approaches. In contrast to the previously shown results (ICP over the entire mesh), we
see here that using ICP on the cropped face (Fig. 6 (c)) provides a better registration.
However, erroneous regions of change still exist around the nose, cheek and chin areas.
The same is noticed with the S-ICP1 approach. S-ICP2 also results in inaccurate dis-
tances estimated around the forehead region in this case. The best registration is achieved
through the S-ICP3 approach with regions of change only found around the cheek region
which is consistent with the expected deformation. Figure 7 shows the retrieval results
with an example query exhibiting an exaggerated expression. The rank-1 retrieved face
corresponds to the query in all cases. ICP performs the worst with only 1 true positive
within the top-6 retrieved faces. S-ICP2 outperforms the other approaches with all true
positives in the top-6 faces.

On the database discussed here, Moreno et al. [14, 15] reported 78% rank-1 recogni-
tion (in 2003 and 2005), while Mousavi et al. [16] report 91% in recent work (in 2008).
Our approach, S-ICP2, achieves 93.7% rank-1 recognition. The main failure mode of the
S-ICP2 approach occurs in faces with a large amount of noise or holes around the nose re-
gion, leading to incorrect PDM fitting and consequently poor registration. Figure 8 shows
an example query face which resulted in poor retrieval due to the entire nose region being
absent. This limitation could be overcome through hierarchical model fitting with subsets
of the PDM and dynamic stable region selection, and is included in our future work.

7 Conclusions
We presented a 3D face retrieval approach based on a coarse-to-fine registration using
anthropometric knowledge and facial landmarks localised using a 3D Point Distribution
Model (PDM). Facial regions are used in the registration and similarity estimation and
we demonstrated that the use of expression invariant regions outperforms use of the entire
face. The nose is the most robust in all region configurations. Future work includes ap-
plying a weighted combination of distances from different regions to further improve dis-
crimination and hierarchical model fitting with subsets of the PDM in the case of missing
key-landmarks. The influence of mesh pre-processing on registration, such as smoothing
and hole filling, will also be investigated.
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Figure 7: Retrieval results of an example query showing robustness of using the nose
region R3 in the S-ICP2 approach (faces highlighted in green indicate true positives, while
red indicate false positives): (a) ICP; (b) S-ICP1; (c) S-ICP2; (d) S-ICP3.
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