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Abstract 

Humans are very sensitive to symmetry in visual patterns. Symmetry is 
detected and recognized very rapidly. While viewing symmetrical patterns 
eye fixations are concentrated along the axis of symmetry or the 
symmetrical center of the patterns. This suggests that symmetry is a highly 
salient feature. Existing computational models of saliency, however, have 
mainly focused on contrast as a measure of saliency. These models do not 
take symmetry into account. In this paper, we discuss local symmetry as 
measure of saliency. We developed a number of symmetry models an 
performed an eye tracking study with human participants viewing 
photographic images to test the models. The performance of our symmetry 
models is compared with the contrast saliency model of Itti et al. [1]. The 
results show that the symmetry models better match the human data than 
the contrast model. This indicates that symmetry is a salient structural 
feature for humans, a finding which can be exploited in computer vision. 

1 Introduction 
Symmetry is a visual stimulus that often occurs in our daily lives. We ourselves, for 
instance, as well as most other organisms, have a clear left-right symmetrical body. 
Also flowers and butterflies are a good example. The degree of symmetry is even an 
indicator of the fitness of the individual. Manipulated images of faces, where the 
symmetry is enhanced, are judged more attractive than the original faces [2]. Symmetry 
does not only have value for living organisms. Also in art and decoration, symmetry is 
usually preferred over asymmetry [3]. Furthermore, symmetry is said to increase the 
figural goodness, since the redundancy in a symmetrical figure makes it simpler to 
encode and is more ordered than a non-symmetrical one [4]. 

In the present research, we investigate whether this abundance of symmetry in the 
environment also means that symmetry plays a role in human visual processing. More 
specifically, we investigate whether symmetry is a salient feature that guides eye 
movements and can thus be considered a good predictor for overt visual attention. We 
propose a new model to calculate saliency on the basis of symmetry, which is able to 
predict human fixations better than existing saliency models.  

It is known that humans are highly sensitive to symmetry. We detect symmetrical 
patterns very rapidly. When patterns have multiple axes of symmetry, recognition speed 
increases even more [5]. Similarly, symmetry positively influences recall and 
discrimination [6]. This suggests that the detection mechanism works preattentively and 
in a parallel manner [7]. The improvement in performance is thought to be related to the 
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redundancy in the symmetrical forms, which results in more effective and simpler 
representations [8]. 

There is also evidence that eye movements are influenced by symmetry. When 
viewing symmetrical forms, humans tend to fixate on the center of the form [9], or the 
crossing points of the symmetry axes [10]. Furthermore Locher and Nodine [11] found 
that fixations are concentrated along the axis of symmetry, and that fixations are more 
spread out for non-symmetrical images. These studies, however, use relatively simple 
stimuli with only one pattern presented at a time. In our experiment, we use 
photographic images to study whether local symmetry also guides eye movements in 
more complex scenes. 

These observations suggest that symmetry is a salient feature. However, most 
existing saliency models that model overt visual attention do not use symmetry as a 
measure of saliency. Instead, most models are based on local contrast in the image. The 
model of Itti et al. [1, 12], for instance, is based on contrasts in luminance, color and 
orientation. Their model is strongly influenced by the feature integration theory of 
human visual search [13]. The saliency model of Itti et al. has been compared to human 
eye fixations. Parkhurst, Law and Niebur [14] tested the model on photographic images 
and they showed that the model matches the human fixation points significantly better 
than expected by chance. Ouerhani et al. [15] also found a positive correlation between 
the model and human fixation data. 

Other saliency models, like the model of Le Meur et al. [16] are also based on 
contrast calculations. In their model contrast is calculated in the spatial frequency 
domain. Le Meur et al. compared their model to human data and found a positive 
correlation, which was slightly higher than the performance of Itti and Koch’s model. A 
set of simpler saliency operators including other features than contrast alone have been 
proposed by Privitera and Stark [17]. These were also found to predict human fixation 
points to some extent. It must be noted that Privitera and Stark also used a basic 

Figure 1: Examples of images containing symmetrical forms. The second column shows 
the human fixation density map, the third shows the contrast saliency map, and the last 
shows our symmetry saliency map. The bright regions are the parts of the maps above 
50% of its maximum. The preference of humans to fixate on the center of symmetry is 
correctly reproduced by our symmetry model, whereas the contrast model displays a 
wide non-specific saliency response. 



symmetry operator, which weakly resembled the human data. Although most existing 
models are based on contrast, figure 1 shows that humans have a clear preference to 
fixate on the center of symmetry. This can neither be explained by Itti and Koch’s 
model, nor by any of the other contrast models. This apparent deficiency in current 
vision models was the stimulus for the present study. In this paper we therefore 
investigate the role of local symmetry in overt visual attention. We use photographic 
images that contain real-world scenes with a complexity that goes beyond the simple 
forms used in the earlier mentioned psychophysical studies. It will be shown that the 
symmetry saliency models that we developed, do match the human eye fixation data. 

The paper is organized as follows. We start with a description of the three symmetry 
saliency models that we developed. These models are based on the isotropic symmetry 
and radial symmetry operator of Reisfeld, Wolfson and Yeshurun [18], and the color 
symmetry operator of Heidemann [19]. Furthermore, the eye tracking study that we 
conducted to test the performance of the saliency models is discussed. Then, the results 
are shown and compared to the saliency model of Itti and Koch, that is based on 
contrast [1]. We end with a discussion on the role of symmetry in overt visual attention.  

2 Methods 
To investigate the role of symmetry in visual attention, we developed a number of 
symmetry saliency models and compared them with human eye tracking data. To 
establish a point of reference, the contrast saliency model of Itti et al. [1] is also 
compared with the human data. In this section, the developed symmetry saliency 
models are explained. Furthermore, we describe the eye tracking studies. The section 
ends with the description of the methods to compare the models with the human data. 

2.1 Symmetry operators 

We developed three symmetry saliency models based on the isotropic symmetry and 
radial symmetry operator of Reisfeld, Wolfson and Yeshurun [18], and the color 
symmetry operator of Heidemann [19]. 

The isotropic symmetry operator [18] calculates the amount of symmetry at a given 
position, p, based upon gradients of the intensity in surrounding pixels. This is done by 
comparing pairs of pixels i and j at positions  pi and pj , where ( ) / 2i jp p p= +  (see 
fig. 2a). Every pixel pair attributes to the local symmetry by  
 ( , ) ( , , ) ( , ) i jc i j d i j p i j m mσ= ⋅ ⋅ ⋅  (1) 
Where mi is the magnitude of the gradient at point i, ( , , )d i j σ  is a Gaussian weighting 
function on the distance between the two pixels with standard deviation σ, and the 
symmetry measurement 
 ( ) ( )( , ) 1 cos( ) 1 cos( )i j i jp i j γ γ γ γ= − + ⋅ − −  (2) 
Where i iγ θ α= −  is the angle between the direction of the gradient angle iθ  and the 
angle α  of the line between pi and pi (see fig. 2b). The first term in equation (2) has a 
maximum value when i jγ γ π+ = , which is true for gradients that are mirror symmetric 
with respect to p. Using only this term would result in high values for points on a 
straight edge, which are not considered symmetrical. To avoid this problem, the second 



term demotes pixel pairs with similar gradient orientation. In this way, the contributions 
of all pixel pairs, ( )pΓ , within the radius, r, are summed up to give the isotropic 
symmetry value for p.  
 iso
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To make the symmetry operator more sensitive to symmetrical patterns with multiple 
axes of symmetry, Reisfeld et al. [18] developed the radial symmetry operator as an 
extension of the isotropic symmetry operator. First, the orientations of the contribution 
of the pixel pairs are calculated by ( , ) ( ) / 2i ji jϕ θ θ= + . Next, the symmetry orientation 
is determined as ( ) ( , )p i jφ ϕ=  for ( , )i j  that give the highest contribution ( , )c i j . This 
value is then used to promote the contributions of pixels pairs with dissimilar 
orientations. 
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The two symmetry operators mentioned above work on intensity values only. Since 
some color transitions are not detectable in gray-valued images, Heidemann [19] 
adapted the isotropic symmetry operator to the color symmetry operator. This operator 
uses three color channels, red, green and blue. Equation (3) is adapted so that not only 
the gradients of pixels in one channel, but also between different channels are 
compared.  
 col

( , ) ( , )

( , ) ( , , , )
i j

i j
i j k k K

x y c i j k k
∈Γ ∈

= ∑ ∑M  (5) 

Where K  contains all combinations of color channels, and c(i,j,ki, kj) is the symmetry 
contribution calculated by comparing pixel i in color channel ki with pixel j in color 
channel kj.  Furthermore, equation (2) is altered to 
 2 2( , ) cos ( ) cos ( ) cos( )i j i jp i j γ γ γ γ= + ⋅ ⋅  (6) 
so that the function becomes π-periodic in the first term, giving the same result for 
gradients that are rotated 180°. The second term keeps the same functionality as the 
second term in equation (2). 

Figure 2: The basis of our symmetry models. (a) gives three examples of pixel pairs 
whose gradients are compared by the symmetry operator. The geometry of the 
contribution of a pixel pair is shown in (b) and further explained in the text. (c) gives an 
overview of the multi scale setup of the symmetry models.   



2.2 Symmetry saliency models 

The given symmetry operators operate on a single spatial scale. However, most existing 
saliency models operate on multiple scales, and the human visual system is also thought 
to process on multiple spatial scales. We therefore developed the operators into multi-
scale symmetry saliency models, similarly to Itti et al’s model [1]. 
The process to retrieve the symmetry maps is depicted in figure 2c. First, five spatial 
scales of the input image are created by progressively applying a Gaussian filter 
followed by a down scaling of the image by a factor two. The different scales are then 
processed to symmetry feature maps using the symmetry operators as discussed in the 
previous section, where we use 24r =  and 36σ = . Next, the five feature maps are 
normalized using the normalization operator N , used in [1].This normalization consists 
first of scaling the feature map values to the range [0..1], and then multiplying the 
feature map with 2(1 )m− , where m  is the average value of all local maxima in the 
map. This normalization promotes feature maps that contain a small number of 
symmetrical patterns that really stand out, as opposed to feature maps that contain many 
patterns with similar symmetry values. Finally, the feature maps are combined into a 
symmetry saliency map by resizing all feature maps to the same size and summing 
them.  
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Where ⊕  is the summation operator that resizes all parts to the same size, and sM  is 
the symmetry feature map at scale s. This procedure results in three symmetry saliency 
maps: isoS  for isotropic symmetry, radS  for patterns with multiple symmetry axes, and 

colS  which uses color information. 

2.3 Eye tracking experiment 

We recorded human fixation data during an eye tracking experiment, using the Eyelink 
head-mounted eye tracking system (SR research). Fixation locations were extracted 
using the accompanied software. The images were displayed full-screen with a 
resolution of 1024 by 768 pixels on an 18’’ crt monitor of 36 by 27 cm at a distance of 
70 cm from the participants. The visual angle was approximately 29º horizontally by 
22º vertically. Before the experiment, the eye tracker was calibrated using the Eyelink 
software. The calibration was verified prior to each session, and recalibrated if needed. 

The participants were asked to free view the images. We did not give the participants 
a task, since we are interested in the bottom-up components of visual attention. A task 

Figure 3: Examples of images used in our experiments, one for each image category: 
flowers, animals, street scenes, buildings and nature.



would give a strong top-down influence on the eye movements. Our approach is similar 
to [16, 20].  

The experiment was carried out by 31 students of the University of Groningen. The 
participants ranged from 17 to 32 years old, among them 15 females and 16 males with 
normal or corrected-to-normal vision. In the experiment, 99 images in five different 
categories were presented, 12 image of animals in a natural setting, 12 images of street 
scenes, 16 images of buildings, 40 images of natural environments, and 19 images of 
natural symmetries, e.g., flowers, plants and butterflies (see figure 3). All these images 
were taken from the McGill calibrated colour image database [21]. The experiment was 
split up into sessions of approximately 5 minutes. Between the sessions, the 
experimenter had a short relaxing conversation with the participants, in order to get 
them motivated and focused for the next session. Before starting a new session, the 
calibration of the eye tracker was verified. After each presented images, drift was 
measured and corrected if needed using the Eyelink software. The participants could 
decide when to continue and were allowed to take a short break. 

2.4 Comparison methods 

We used two methods to compare the saliency models with the human data. The first 
method is a correlation method similar to [15, 16]. In this method we correlate the 
saliency maps with fixation density maps calculated from the human fixation data for 
every single trial. For every single trial, the fixation density map is constructed by 
placing Gaussian distributions for every fixation with the mean equal to the point of 
fixation and a standard deviation of 18 pixels. This value is chosen to fit the angular 
size of the fovea. The resulting value of this comparison method is given by the 
correlation coefficient, ρ, as calculated by equation (8).  
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Where F is the fixation density map, S is the saliency map and µ and σ2 are 
respectively the mean and the variance of these maps. The correlation coefficient has a 
value between -1 and 1. 0ρ =  means that there is no correlation between the two maps, 
which is true when correlating with random fixation density maps. A value for ρ  close 
to zero indicates that a model is a poor predictor of human fixation locations. Positive 
correlations show that there is a similar structure in the saliency map and the human 
fixation map. 

The second comparison method, the fixation saliency method, measures the average 
saliency at the points of human fixation, as compared to the average saliency at a large 
number of randomly chosen points. This method is similar to that used by Parkhurst et 
al. [14]. The method puts an emphasis on the analyses of the fixation points more than 
on the comparison of the complete saliency maps. The fixation saliency score λ is 
calculated by 

 1
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Where fi is the ith human fixation location and rnd is a randomly determined location. 
We used an m of 1000 in our analysis. Furthermore, s( )p  is the average saliency value 
in a patch of the saliency map centered at point p and with a radius 28r = . If 1λ > , the 
saliency at the human fixation points is higher than in the rest of the image, which 
means that the given saliency model has predictive power. 

3 Results 
In figure 4, the results of the correlation method are shown. The five groups contain the 
results for the different categories. Within each group, the bars show the mean 
correlation coefficient, as calculated by equation (8), for every method. The error bars 
give the 95% confidence intervals. To put the scores into perspective, the plot 
furthermore shows the inter subject correlation, and the correlation of the human data 
with random fixations. The first depicted by the horizontal gray bars with a solid line 
giving the mean and 95% confidence interval. The later is depicted by the horizontal 
dashed line. All means and confidence intervals are calculated using multi-level 
bootstrapping analysis. 

The inter-subject correlation is calculated for every image by correlating the fixation 
density maps of the participants with the maps of all other participants. This correlation 
shows how well the human fixations can be predicted using the fixations of other 
participants. This value gives a relative indication of the performance of the models. 
The random fixation scores are calculated by correlating random fixation density maps 
containing 15 random fixations with the human fixation density maps. Fifteen fixations 
are used since this compares to the average number of human fixations per image. 

It is important to note that the correlation values are relatively low. The reason for 
this is that the photographic images are complex stimuli that generate many fixations. 
Some of these appear to be random, and pull down the correlation. Some, on the other 
hand re- occur for every subject, and also have high values for symmetric saliency. This 

Figure 4: The results of correlation method. The groups show the results for the 
different image categories. The error bars give the 95% confidence intervals. The 
horizontal gray bars with the solid line show the mean and 95% confidence interval of 
the inter subject correlation. The dashed lines show the correlation of the human data 
with random fixations (close to zero). 



causes significantly higher than random correlations. To measure the significance of the 
correlations between the model data and human data, they are compared with the 
random case for minimal correlation and the inter-subject case for a top performance.  

The difference between the performance of all models and the random fixations is 
highly significant. Figure 4 furthermore shows that the performance for the images 
containing natural symmetries is significantly higher for the three symmetry models 
than for the saliency model of Itti and Koch. The performance of the symmetry models 
is even comparable to the inter-subject correlation. Not only for the images containing 
explicit symmetrical forms, also for the other categories have the symmetry models 
significantly outperformed the contrast model. For these categories too, the 
performance is similar to the inter-subject correlation. 

Among the three symmetry models, there is no significant difference in performance. 
However, the performance of the radial symmetry model is somewhat higher for the 
images containing natural symmetries. 

Remarkably, for the natural images, the correlations for the symmetry models are 
higher than the inter-subject correlation. This can be explained by the diversity of 
fixation locations among the participants viewing these images. The images apparently 
contain many similarly interesting points. However, the higher values for the symmetry 
models suggest that the participants do primarily attend to the locally symmetrical parts. 

For the animal images, there is no significant difference between the symmetry 
models and the contrast model. Different from other images in our experiment, these 
images depict objects on low-contrast backgrounds. This explains the higher consensus 
among the participants, and also explain the higher correlation for Itti and Koch’s 
model. 

The results of the fixation saliency analysis are shown in figure 5. The bars show the 
mean fixation saliency as calculated by equation (9). The error bars are the 95% 
confidence intervals calculated using multi-level bootstrapping. The results confirm the 
previous results with the correlation method. For most image categories, the saliency at 
human fixation points measured by the symmetry models is significantly higher than 
that measured by the contrast saliency model. Again, the results are not significantly 

Figure 5: The saliency at human fixation points relative to the average saliency at 
random points. The bars show the mean fixation saliency for the different saliency 
models. The error bars are the 95% confidence intervals. 



different for the animal category. Between the symmetry models, no clear differences 
exist, although the radial symmetry model performs slightly better. 

The fact that both methods show a better performance for the symmetry models 
strengthens the conclusion that local symmetry is a highly significant feature for 
humans, and that it plays a considerable role in the guidance of eye movements. 

4 Discussion 
Investigating the role of local symmetry in guiding eye fixations, we developed three 
symmetry models and compared them to human fixation data. The performance of the 
models was analyzed using two methods and compared to the performance of the 
contrast saliency model of Itti and Koch. The results of both analyses show that humans 
pay attention to local symmetrical patterns more than they pay attention to contrast 
when viewing complex photographic images. Furthermore, the correlation results of the 
symmetry models are comparable to the inter-subject correlation, which indicates that 
symmetry is a good predictor for human eye fixations.  

There is no significant difference between the three symmetry models. However, for 
the natural symmetries, we see a slightly better performance of the radial symmetry 
model, suggesting a preference of humans for patterns containing multiple symmetry 
axes. The addition of color processing, in any case, does not improve the performance.  

To further investigate the role of symmetry in human vision, we will conduct similar 
experiments with artificial stimuli. For instance in line drawings, the role of structural 
features like symmetry is expected to be larger since it contains information about form.  

We furthermore plan to investigate the role of symmetry in artificial vision systems. 
Specifically, in current robotics, robots navigate in man-made environments containing 
many symmetrical patterns. We therefore hypothesize that our symmetry models are 
well suited to select interesting visual information for visual navigation.  

To conclude, the symmetry saliency models that we developed compare well with 
human fixations. The results show that humans are sensitive to symmetrical patterns 
and pay attention to symmetry. 
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