Background Subtraction in Videos using
Bayesian Learning with Motion Information

Padmini Jaikumar, Abhishek Singh and Suman K Mitra
Dhirubhai Ambani Institute of Information and Communication Technology
Gandhinagar, Gujarat, India - 382007
{padmini_jaikumar,abhishek _singh,suman mitra}@daiict.ac.in

Abstract

This paper proposes an accurate and fast background subtraction technique
for object tracking in still camera videos. Regions of motion in a frame are
first estimated by comparing the current frame to a previous one. A sampling-
resampling based Bayesian learning technique is then used on the estimated
regions to perform background subtraction and accurately determine the ex-
act pixels which correspond to moving objects. An obvious advantage in
terms of processing time is gained as the Bayesian learning steps are per-
formed only on the estimated motion regions, which typically constitute only
a small fraction of the frame. The technique has been used on a variety of
indoor and outdoor sequences, to track both slow and fast moving objects,
under different lighting conditions and varying object-background contrast.
Results demonstrate that the technique achieves high degrees of sensitivity
with considerably lower time complexity as compared to existing techniques
based on mixture modeling of the background.

1 Introduction

With increase in processing power, the use of computers for complex image processing
applications has been on the rise. An important vision application is in the domain of
object detection and tracking. Techniques based on mixture modeling of background re-
main most popular [11],[13],[9],[14],[3]. Many of the existing techniques compromise
on the accuracy of the system, in favour of achieving fast processing speeds. Stauffer and
Grimson [13] have used a fast online k-means based approximation to update the param-
eters of a Gaussian Mixture Model. While the method is very effective when the contrast
between background and foreground is high, it yields poor results when the contrast is
low [6], [11]. Block Matching based techniques have also been used for fast object track-
ing [7],[8]. However, these techniques yield at best a rough estimate of the moving body.
They fail to yield an accurate contour of the moving body, required by applications such
as object recognition, military surveillance etc.

On the other hand, relatively slower object tracking techniques such as [11] and [3]
yield results with high sensitivity and appreciable performance in demanding conditions.
Singh et al. [11] have used a combination of the EM algorithm and the online k-means
approximation for updating parameters of the mixture model to obtain appreciable results
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in low contrast conditions. However, the resulting technique is quite slow, in addition to
having a high false alarm rate.

This paper presents a robust system that acheives both (1) high speed and (2) high
degrees of sensitivity compared to existing techniques. To achieve these objectives a 2
step tracking system has been used.

Typically, in a still camera video sequence only a small portion of the each frame
has motion relative to previous frames. Existing approaches to object tracking such as
[13], [11], [9], [3] perform segmentation algorithms on all spatial pixel locations in the
frame, leading to needless computational cost. To overcome this limitation, regions of the
frame which have had motion relative to previous frames are first estimated using Sum of
Absolute Differences (SAD). It is only on these regions that the segmentation algorithm
is performed, leading to considerable saving in computational cost.

To achieve object tracking with high sensitivity and low false classifications, a Bayesian
Learning based object-background classification technique is used. Bayesian learning
techniques of determining the parameters of a model are generally more accurate as com-
pared to classical probabilistic techniques, and most modern machine learning methods
are based on Bayesian principles [1].

Pixel observations at a particular spatial pixel location are expected to form a certain
number of clusters. The parameters of these clusters are thought to have probabilistic
distributions of their own. These distributions are updated via a Bayesian ‘Sampling-
Resampling’ learning technique (elaborated later) to obtain posterior distributions. These
posterior distributions along with some criteria are used to classify pixel observations as
background and foreground.

The results obtained using this method show a considerable improvement in the frac-
tion of the actual foreground detected and reduction in incorrect classifications as com-
pared to existing real-time techniques as proposed by Stauffer and Grimson [13] and
offline techniques as proposed by Singh et al. [11]. At the same time the speed of the
algorithm is shown to be comparable to real-time tracking techniques such as [13].

The next section describes a statistical ‘sampling-resampling’ technique given by
Smith and Gelfand [12], which suggests easy implementation strategies and computa-
tional efficiency while implementing Bayesian learning. Section 3 describes our method
used for object tracking. Sections 4 and 5 show results and conclusions respectively.

2 Mathematical Preliminaries

2.1 Sampling-Resampling based Bayesian Learning

Given a model and some observation(s), the prior distribution of the parameters of the
model is updated to a posterior distribution as,
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which is a familiar form of Bayes’ Theorem. Except in very simple cases, evaluation
of a posterior distribution as above would require sophisticated numerical integration or
other analytical approximation techniques, which can be totally off-putting for practical
applications. Smith and Gelfand [12] address this problem by giving a new look to Bayes’



Theorem from a sampling-resampling perspective. In terms of densities, the essence of
Bayes’ Theorem is to relate the prior density to the posterior density via the likelihood
function. Shifting to samples, this corresponds to obtaining a set of posterior samples
from a set of prior samples (of the parameter distribution). A method described in [12] of
doing so can be very briefly summarized in the following steps:

1. Given a prior distribution p(6) of parameter 6, obtain n samples {6, 65, ...,6,}
from it.

2. Compute weight g; for each sample 6;, using the likelihood function as follows:
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3. Draw 0* from the discrete distribution {6y, 65, ..., 6, }, placing mass ¢; on 6;. Then
6* is approximately distributed according to the required posterior distribution
p(0]x), given the current observation x. The justification for this can be found
in [12].

Note that this resampling technique is also a variant of the bootstrap resampling pro-
cedure as described in [2] and the SIR (sampling/importance resampling) procedure in
[10].

3 Proposed Method

Segmenting moving objects in still camera video frames is done in three stages in the
proposed method. Section 3.1 describes the first step of the tracking algorithm which in-
volves estimating regions in the current frame which have motion. Section 3.2 describes
the ‘Sampling-Resampling’ based Bayesian Learning technique which has been used for
estimating parameters of the distribution formed by pixel observations at a particular spa-
tial pixel position. Section 3.3 describes the criteria used for classifying pixel observations
into background and foreground.

3.1 Isolation of Regions of Motion

The Block Matching Algorithm (BMA) is a standard way of encoding video frames [5]. A
simplified variation of the BMA algorithm is used for determining regions of each frame
which have had motion relative to a reference frame. Such regions have been called
regions of motion. Each incoming frame is divided into non-overlapping blocks of equal
size. Each block is compared to the corresponding block in the reference frame and the
Sum of Absolute Difference (SAD) is determined for the block,
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In order to attenuate the effect of noise, a threshold value called zero motion bias has
been used [5]. The threshold defines the minimum difference that the two corresponding
blocks must have in order for the current block to be identified as a region of motion. If



the SAD value of the current block is below the zero motion bias, the block is said to be
motionless and the segmentation algorithm is not performed on the block. This technique
results in a significant reduction of false detections. The precise segmentation algorithm
(section 3.2 and 3.3) is only performed on blocks which have their SAD values above
the zero motion bias. The reference frame may be chosen to be a few frames before the
current frame, to account for slow moving objects.

Figure 1: Result of Motion Region Estimation

Alternately, information from Motion Vectors (already available in MPEG videos) can
be used to estimate the regions/blocks which have motion in them. Motion Vectors are
used in the compression scheme employed in MPEG videos.

3.2 Bayesian Learning of cluster parameters

Pixel observations at a particular spatial pixel location (also called ‘pixel process’ in [13])
are expected to form a certain number (less than K) of clusters. The observations or data
points would be a scalars in case of grayscale videos, and RGB vectors in case of color
videos. The Mean value y; of each cluster is thought to have a probability distribution
pi(u;), where i = 1,2,..., K. Therefore, for each pixel position there exist K distributions
of cluster Means. Whenever a pixel value is observed, the existing or prior distribution of
one of these cluster Means is updated to a posterior distribution using a Bayesian learning
technique. This learning process continues throughout the entire video sequence. The
details of the Bayesian learning steps are described below.

The Bayesian learning process described above is only performed for pixel obser-
vations in the regions of motion identified for the frame. The prior distributions of the
pixel observation which are not in the regions of motion (of the current frame) are left
unchanged.

The first few frames (the first few learning observations of a pixel process) are re-
quired to build a stable distribution of the cluster Means. No classification is done for
these frames.Henceforth, for each observation, a classification step is also performed
wherein the observation is adjudged (based on certain criteria) as foreground or back-
ground. The details of the classification steps are described in Section 3.3.

3.2.1 Steps for Bayesian Learning

The following steps are performed for each observation made at a particular spatial pixel
location:

1. Draw N samples each from all the prior distributions of the K Means. Let us call the
obtained samples as {111, 12, ..., LiN }> {H21 1225 -y HON Jo ooos {HK T, MK25 ooy MKN }-



2. When a pixel value x is observed at the particular location, compute the sum of
likelihoods for each Mean distribution, given that observation:
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The likelihood of each Mean sample L,; is calculated as the probability of observing
x in a Gaussian distribution centered at u,;, with covariance matrix X;.
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The model variance, L)y can be thought of as a parameter to control the sensitivity
of the system. Its effect on clustering is described later.

3. The next step is to determine which cluster the pixel observation belongs to. The
observation would belong to the cluster having the highest sum of likelihoods value
L,. The prior distribution of the Mean of this cluster is updated to obtain a posterior
distribution using step 4. The distributions of the Means of the other clusters are
left unchanged.

4. The steps to update a prior distribution to a posterior one are:

(a) If the /" distribution is to be updated, compute weights ¢; for each sample p,;
of the prior distribtion as follows:

_ l(.uri;x)
L.
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(b) {1, U2,..., yn } are then resampled using the weighted bootstrap method
with weights {¢1,¢2,...,qn } to obtain samples from the posterior distribution

of p,, which are {15, ..., Wiy

5. When the next pixel observation is made, the posterior samples {f', 15, ..., iy}
become the prior samples of the 7" cluster Mean.

Steps 1 through 5 are repeated for every observation of the pixel process.

It is important to note that this entire process is done just for one pixel process. There-
fore, if regions of motion were not used, in a 80x120 pixel video sequence for example,
the entire process would need to be done for all the 9600 (80*120) pixel positions, in-
dependently. However, implementing the learning process on regions of motion(which is
typically only a small fraction of the frame) significantly improves speed without com-
promising the tracking ability of the system, as shown in the results section.

3.2.2 Effect of changing Model Variance

Having a narrower Gaussian (small values in the matrix X;;) for computing likelihoods
(equation 5) would mean that the bootstrap weights would decrease more rapidly as the
distance of the sample, L,;, from the current pixel observation, X, increases. Only those
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Figure 2: Schematic showing posterior distributions of a univariate Mean. (a) Posterior
distribution obtained when a high model variance is used. (b) Posterior distribution ob-
tained when a low model variance is used

samples which are very close to the pixel observation would be assigned high weights.
As a result, posterior samples would form a narrow distribution, as shown qualitatively in
Fig. 2.

This would result in a finer clustering of observations. Closely separated observations
would be clustered into different classes. Therefore a low value of model variance results
in high sensitivity and better results in cases where foreground and background clusters
are close (low contrast conditions).

3.3 Classification of Pixel Observations into Background and
Foreground

For every pixel observation, classification involves determining if it belongs to the back-
ground or the foreground. The first few initial frames in the video sequence (called learn-
ing frames) are used to build stable distributions of the cluster means, using the process
detailed in Section 3.2. No classification is done for these learning frames. Classification
is done for subsequent frames using the process given below.

Typically, in a video sequence involving moving objects, at a particular spatial pixel
position a majority of the pixel observations would correspond to the background. There-
fore, background clusters would typically account for much more observations than the
foreground clusters. This means that the prior weight (@) of any background cluster
would be higher than that of a foreground cluster. The clusters are ordered based on
their prior weight. Based on a certain threshold Tk, the first B clusters are chosen as
background clusters, where

b
B = argmin, (Z oy > Th> (7)

k=1

Th is a measure of the minimum portion of the data that should be accounted for by
the background. A relatively lower value of Th (=~ 0.5) can be used when the background
is unimodal. A higher value of Th (> 0.7) allows more than one Gaussian to be a part
of the background, enabling the mixture model to adapt to lighting changes, repetitive
motion etc.

The sum of likelihoods (L,) is used to determine the cluster to which the observed
pixel belongs. If this cluster is not one of the first B clusters as described above, the pixel
would be a foreground pixel.



The classification process is only performed on the pixel locations inside the regions
of motion in the current frame. All pixel locations in the current frame outside the regions
of motion are classified as background.

4 Experimental Results

The proposed technique has been tested on a variety of indoor and outdoor video se-
quences. It has been used to track both fast and slow moving objects under different
lighting conditions, varying object-background contrast and situations in which the ob-
ject is camouflaged by the background. Fig. 3 and 4 show the two steps of the tracking
process.
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Figure 3: The first row shows original frames from a video sequence. The second row
shows the results of motion region estimation. The third row shows the final Bayesian
Sampling-Resampling results. Note that fast moving objects which seem to be camou-
flaged by the background are also accurately detected.
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Figure 4: The first row shows original frames from a video sequence. The second row
shows the results of motion region estimation. The third row shows the final Bayesian
Sampling-Resampling results.



The tracking accuracy and the time complexity of the proposed technique has been
compared using a low contrast benchmark video (obtained from the Advanced Computer
Vision Gmbh - ACV[4]) to two existing techniques proposed by Stauffer and Grimson[13]
and Singh et al.[11] in Fig 5. Plots of Sensitivity (the fraction of the actual foreground
detected) and False Alarm Rate (fraction of pixels incorrectly classified as foreground)
are also shown to better understand the results quantitatively. A table comparing the CPU
time taken by the 3 techniques has also been shown. The values were obtained by imple-
menting the techniques on 128x96 pixel videos, in Matlab 7.2 using a 1.7 Ghz processor.
Note that these are time taken for running computer simulations of the techniques, meant
for comparative purposes only. Actual speeds on optimized real time systems may vary.

As can be seen from the results, the Stauffer and Grimson approach[13] has the least
time complexity, however, the showing low Sensitivity. The approach proposed by Singh
et al.[11] achieves the highest sensitivity, but at the cost of higher processing time.

The proposed technique achieves Sensitivity comparable to [11] while maintaining a
time complexity comparable to [13]. Also, the False Alarm Rate of the proposed tech-
nique is lower as compared to [11].

Table 1: Comparison of Sensitivity, False Alarm Rate and CPU Time for results shown in
Fig. 5

Approach used Avg. Sensitivity Avg. False CPU Time for 100
(%) Alarm Rate (%)  frames (min:sec)

GMM with

online approx.[13] 36 0.05 1:25

GMM with online

approx. and EM[11] 87 1.8 28:30

Bayesian Learning
with Motion Region
Estimation 78 0.46 1:55

5 Conclusion

This paper has presented an accurate and fast background subtraction approach in still
camera videos. Unlike existing real-time techniques that compromise on quality of seg-
mentation, the proposed method achieves high processing speed with no compromise
accuracy. The high sensitivity is achieved using an accurate Bayesian learning approach.
The accurate contours of segmented objects allow for their use in higher level vision ap-
plications as well, such as object extraction, recognition etc. The proposed segmentation
technique using Bayesian learning also retains the advantages of using mixture models
to model the background, such as adaptation to lighting changes and multimodal back-
grounds. Results have indicated, both quantitatively and qualitatively, the superiority of
the proposed technique.
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Figure 5: The first row shows original frames from a low contrast benchmark video se-
quence obtained from [4]. The second row shows the ground truth frames of the same
video. The third row shows the tracking results using the Stauffer and Grimson approach
[13], where only some high contrast regions are tracked well. The fourth row shows the
tracking results using the Singh et al. approach [11], where object detection is not sharp
and accurate. The fifth row shows results obtained using the proposed technique
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