
Efficient Tracking of 3D Objects Using Multiple

Orthogonal Cameras

Enrique Muñoz

Dep. Sistemas Informáticos y Computación,

U. Complutense de Madrid, Spain

http://www.dia.fi.upm.es/~pcr

José M. Buenaposada

Dep. Ciencias de la Computación,

U. Rey Juan Carlos, Spain

http://www.dia.fi.upm.es/~pcr

Luis Baumela

Dep. de Inteligencia Artificial,

U. Politécnica de Madrid, Spain

http://www.dia.fi.upm.es/~pcr

Abstract

We introduce a multi-view direct procedure for efficiently tracking 3D ob-

jects. It is an extension of Hager and Belhumeur’s factorisation approach to

the case of three-dimensional objects and multi-camera setup. By tracking a

3-D object we mean to estimate the pose and location of the object through

a video sequence. A novel parameterisation of the object texture allow us

to compute the Jacobian that emerges in the minimisation in a way it has a

large constant part. The pixels viewed by each camera determine the rows

of the Jacobian used for tracking. We perform qualitative and quantitative

experiments confirming the validity of the approach.

1 Introduction

Efficiently tracking 3D objects has been a topic of interest in Computer Vision for years,

with applications in augmented reality, advanced human-machine interfaces and robotics.

Tracking is achieved by estimating the parameters of a function representing the relative

position between camera and object. This can be achieved by matching a sparse collection

of features (feature-based approaches) or by directly minimising the difference in image

intensity values (direct approaches). The main advantage of feature-based approaches

is the possibility of working with very large inter-frame motion [9]. This make them

best suited for target detection or for recovery after a complete loss. Direct approaches

assume that inter-frame motion is small, as is the case in video sequences. Tracking

is usually posed as a Gauss-Newton-like optimisation process, minimising a similarity

measure between a reference model and the target region [8]. Their main advantage is

accuracy, since usually all pixels in the region contribute to the estimation. This is a key

feature, for example, for applications in virtual reality and robotics in which tracking jitter

must be minimised.

Many applications of tracking (e.g. robot navigation [8], augmented reality, face

tracking [7]) also require real-time video processing capabilities. So far, two main re-

BMVC 2008 doi:10.5244/C.22.100

search paths have have been explored to increase the efficiency of direct image alignment

methods:

a) Reduce the computational cost. The computational cost of each Gauss-Newton iter-

ation can be reduced by precomputing part of the image Jacobian, as done by Hager

and Belhumeur [7], or all of it, as in Baker and Matthews’ Inverse Compositional

Image Alignment (ICIA) algorithm [1]. Computational requirements may also be

lowered by discarding pixels that do not contribute significantly to the minimisa-

tion. These pixels are normally located in low-textured image regions [5].

b) Improve the convergence properties. Efficiency has also been improved by increas-

ing the convergence rate of the minimisation algorithm. Benhimane and Malis [4]

propose the Efficient Second order Minimisation procedure (ESM) which con-

verges faster and with a larger convergence region than Gauss-Newton, without the

need of computing the Hessian matrix. Faster convergence rate and larger conver-

gence region may also be achieved by selecting pixels which verify the assumption

of linearity w.r.t. the motion parameters in the minimisation [3].

In this paper we introduce a multi-view direct procedure for efficiently tracking 3D

objects. It is an extension of Hager’s [7] factorisation approach to the case of three-

dimensional objects and multi-camera setup. Our factorisation is closely related to the

solution introduced by W. Sepp in [12]. His tracker, nevertheless, only works in the

vicinity of the reference image. Our tracker is based on a 3D model of the target. It is

composed of a textured 3D point cloud, which is valid for any relative orientation between

camera and object.

Most previous approximations to 3D tracking are monocular, but a number of recent

approaches are based on multiple views. Devernay et al. [6] use a Lucas-Kanade-like

procedure to track both 3D points and texture patches (surfels). In [13], pose is computed

from both point matching and similarity measures from off-line key-frames (images) of

the target. Baker et al. determines object’s motion simultaneously from several cameras

using an Active Appearance Model (AAM) on each camera constrained globally by a

single 3D model [10].

In our multi-view procedure, tracking is based on a direct approach that minimises the

discrepancy between the sequence of image values and the pixel intensities (texture) of the

target. This texture and its derivatives w.r.t. object’s motion will be defined for each 3D

point (vertex) of the object, even for those not visible in the first frame of the sequence (as

opposed to [12] and [6]). These derivatives, crucial for 3D motion estimation, will also be

independent of the camera position, which enables us to use any number of cameras with

a single Jacobian. In our approach, each target point has associated one texture derivative.

Each camera determines the subset of object points that are visible to the tracker and will

be used for tracking.

The paper is organised as follows: Section 2 introduces the object model and notation

used through the paper. The efficient estimation procedure for 3D motion is presented in

Section 3, and expanded with annotations in appendix A. Section 4 deals with the multi-

view extension. Finally, in Sections 5 and 6 we describe the experiments conducted and

draw conclusions.

(a) (b)

Figure 1: (a) Example of virtual cameras around the object. Each camera optical axis

is oriented along the vertex normal attached to it. (b) Texture map for numbered cube.

Notice that the texture covers all possible views of the object.

2 Model Description

Let M be our object model, M = {V ,T }, composed of 3D points (vertices) and inten-

sity values (texture). The set of model vertices is defined byV = {xi ∈R
3|i= {1, . . . ,V}},

where each point is expressed in terms of a scene coordinate system with origin atO. Each

object vertex has a texture value, defined as T = {T [xi] ∈ R|i = {1, . . . ,N}}, by means

of a texture map T : R3 7→ R. Figure 1 shows both the texture object and its texture map

represented as an image.

The object pose and location are parametrically defined by a motion model (or warp)

f ∈ SE(3). Motion in 3D is represented as a rigid body transformation with a rotation R ∈
SO(3) and a 3D offset t ∈ R3: x′i = Rxi + t,∀xi. Of course, both rotation and translation

are common to the whole set of object’s vertices. Rotation matrices are parameterised

with an exponential map ω = (ωx,ωy,ωz)
⊤. These values are stacked together with the

translation values in a parameter vector µ ∈ R6: µ = (ω⊤
,tx,ty,tz)

⊤. Let It [u] be the

intensity value at the pixel location u of the image acquired at time t. Under Lambertian

assumptions, the following brightness constancy equation holds

T[x] = It [p(f(x,µ))], (1)

where vector It is the result of stacking the intensity values of the projections of each

vertex xi in image It . The same applies to T. Vertices are projected onto the image plane

using an orthogonal projection function p, that depends on the known camera intrinsics.

2.1 Texture equivalence

Now, we will derive the constancy equation using an alternate representation for the tex-

ture values of the object. We will use a set of virtual cameras (one per point) such the

image intensities resulting from the projection of each point equals the texture values

for that vertex. This is similar to Fua’s key-frames representation, [13], but having one

(virtual) key-frame per object vertex.

Let us suppose now that we have N orthogonal cameras around our object represented

by the location of their optical centres, Ci, i = 1 . . .N. Each camera has its optical axis

aligned with vector ni, the normal to the point xi (see Figure 1). Point xi is expressed in

the reference coordinate system of camera C j as x
j
i using

x
j
i = φ j(xi) = R jxi−R jt j,

xi = φ j
−1(x j

i) = R
⊤
j x

j
i + t j,

(2)

where φ j ∈ SE(3) is a rigid body transformation between both coordinate systems, which

is given by a rotation R j ∈ SO(3) and a translation t j ∈ R3. Note that point x
j
i always has

the form x
j
i = (0,0,z j)

⊤ (expressed in camera coordinates). Let I j be the image captured

by C j. Points are orthogonally projected onto the image plane by means of function p j,

which depends on the camera intrinsics. Each camera may have different intrinsics. Point

x
j
i is projected onto the principal point of I j, so its intensity values equals the texture value

of the vertex.

T [xi] = I j[p j(x
j
i)] ∀xi. (3)

Combining equations (1), (2) and (3) results in a new brightness constancy equation

expressed in terms of each virtual camera C j,

I j[p j(x
j
i)] = It [p(f(φ−1

j (x
j
i),µ t))] ∀x

j
i , (4)

where µt is the vector of parameters that optimally correspond to the object pose for time

t.

Using the above assumption, we can pose our tracking problem in terms of a minimi-

sation of the motion parameters µ ,

min
µt+1

J (µ) = ||I j[p j(x
j)]− It+1[p(f(φ−1

j (x j),µ t+1))]||
2
. (5)

Assuming incremental changes in our motion parameters between two consecutive time

instants, we can rewrite equation (5) as

min
δ µt

J (µ) = ||I j[p j(x
j)]− I[p(f(φ−1

j (x j),µ t + δ µt))]||
2
. (6)

Making a Taylor series expansion at (µ t ,t), we can rewrite the right term of (6) as

min
δ µt

J (µ) = ||e(t)−
∂ It [p(f(φ−1

j (x j),µ)])

∂ µ

∣
∣
∣
∣
∣
µ=µt

︸ ︷︷ ︸

J(t)

δ µ t ||
2
, (7)

where and e(t) is the vector of image differences, e(t) = I j[p j(x
j)]−I j[p(f(φ−1

j (x j),µ t +

δ µ t))], and J(t) is the Jacobian matrix relating the instantaneous change of image values

with the motion parameters, both at time instant t. With least-squares we can compute the

minimum of J as δ µ t = (J(t)⊤J(t))−1
J(t)⊤e(t). Usually, this estimation is iteratively

refined (Gauss-Newton minimisation) until a stop criterion is reached.

3 Efficient Tracking

The major limitation of the tracking procedure described above is the computational cost

of recomputing the image derivatives for each image in the sequence, since the Jacobian

matrix J(t) depends on It . We will alleviate this computational burden extending the

factorisation scheme proposed in [7] to the case of a 3D textured object. The key idea

here is to express intensity changes due to object’s motion in terms of the texture map of

the object instead of the image values at instant t. Taking derivatives in (4) w.r.t. x j we

have1,

∂ I j[p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

≈
∂ It [p(f(φ−1

j (X̂),µ t))]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

. (8)

And applying the chain rule to the right side of (8) leads us to

∂ It [p(f(φ−1
j (X̂),µ t))]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

=

[

∂ It [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

(9)

We can move the two rightmost regular matrices of (9) to the other side of equation,

resulting in

[

∂ It [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

≈

[

∂ I j[p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1
(10)

On the other hand, we can expand J(t) using the chain rule,

∂ It [p(f(φ−1
j (x j),µ))]

∂ µ

∣
∣
∣
∣
∣
µ=µt

=

[

∂ It [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

·




∂ f(φ−1

j (x j),µ)

∂ µ

∣
∣
∣
∣
∣
µ=µt




.

(11)

1Note here that we assume that there is an extension of the texture value out of the object surface, so the

derivative exists. Since our projection is orthogonal,
∂ Ik[pk(X̂)]

∂ z

∣
∣
∣
∣
X̂=xk

= 0 for any point on the object surface.

Plugging equation (10) into (11) results in a expression for J that does not depend on It ,

∂ It [p(f(φ−1
j (x j),µ))]

∂ µ

∣
∣
∣
∣
∣
µ=µt

≈

[

∂ I j[p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1

·




∂ f(φ−1

j (x j),µ)

∂ µ

∣
∣
∣
∣
∣
µ=µt




.

(12)

This equation can be further refined so our Jacobian matrix can be represented as J(t) =
M0Σ(t). Matrix M0 is such that it depends on the vertices and the texture map, whereas Σ(t)
is a matrix that depends on the motion parameters and therefore it must be recomputed

for each t. Details on derivation can be found in appendix A. Optimal parameters at time

t are efficiently computed as

δ µ t = (Σ(t)⊤(M⊤0 M0)Σ(t))
−1
Σ(t)⊤M⊤0 e(t). (13)

Notice that the large N × 30 matrix M0 is constant whereas time-changing Σ(t) is just

30× 6 size, so finding our optimum has been considerably speeded up as much of these

values can be precomputed.

4 Multiple Camera Tracking

From equation (15),we know that the Jacobian matrix is defined for the whole set of

vertices of the object, but at time instant t only a portion of them are visible. This implies

that only some rows of J(t) will be used: those corresponding to the visible vertices

projected onto It . Let us suppose we have two or more cameras. Detailed inspection of

equation (15) shows that matrix J(t) does not depend on the camera position at time t, but

on the pose of the virtual cameras and the texture map values. Then, at time instant t we

could use those rows of J(t) that are deemed as visible points at each camera. Figure 2

shows the visibility map for the camera setup of Figure 1.

Again, from (15), the matrix row J(t)i at time t depends only on the texture map Txi

iff equation (8), the derivative of the brightness constancy, holds. This is only true when

the image It corresponds to the virtual camera attached to xi. Thus, for each given camera,

we could only use those rows of J(t) corresponding to points whose normal have the same

orientation of the optical ray of the camera. However, we can relax the condition on the

brightness constancy so that a larger number of rows per camera are selected. The larger

the angle difference between the optical axis and the point normal, the lesser the accuracy

of the brightness constancy assumption,and hence, the worse will be the approximation

to our true Jacobian matrix. On the other hand, notice that the more cameras we have, the

more rows of J(t) will be available, and hence, the better will be the tracking.
Notice as well that some terms from (13) must be recomputed for each time instant

because of changes of the visibility of the vertices. However, recomputing consist of

deleting or adding rows of M0 and then operating between the matrices but the values of

M0 remain constant.

(a) (b)

Figure 2: (a) Views from the cameras located as described in Figure 1. (b) Visibility

map for computing matrix J(t) at the given setup. The vertices that are not visible in any

camera are overlaid in blue.

5 Experimental Validation

The goal of these experiments is to empirically validate our algorithm. This is achieved

by using a sequence of synthetically created images where the object’s motion is known

with absolute accuracy. The sequence is 600 frames long and comprises a textured cube

simultaneously rotating and translating in the three axis of coordinates.

The cube is 100 units side and has a Gaussian pattern with a different number attached

to each face (see Figure 1) and it is placed at the origin of the scene reference system.

We simulate four cameras located at 4000 units from the object at different orientations

(again, see Figure 1). Initially, each camera looks at a different face of the object and they

all share the same intrinsics. We simulate a orthographic projection camera by using a

focal length of 20mm together with the considerable object-to-camera distance. The cube

spins 360 degrees around each one of it axis of rotation while simultaneously translates

through the scene. Snapshots of several frames are shown in Figure 3.

For each frame of the sequence we compute the motion parameters using the pro-

posed algorithm. The iterative procedure minimises the texture values corresponding to

each visible vertex with the images values captured from different cameras. Qualitative

results are presented in Figure 3. We overlay onto each image of the sequence a wire-

frame model of the object. The model is placed using both the ground-truth and the

estimated values of the motion parameters, which allow us to compare them visually. We

also present quantitative results in Figure 4, where we plot ground-truth parameter values

against the estimations computed from the algorithm. Estimation for rotation parameters

is quite accurate whereas the 3D offset is precise enough in most of the sequence. Notice

that the estimated values diverge from the ground-truth for some frames, i.e., the “valley”

of ty. This is caused by a special configuration of the cube’s faces in which the normal of

all six faces depart considerably from the four cameras optical axes. In this case J(t) is
not accurately estimated.

Frame 1 Frame 100 Frame 200 Frame 300 Frame 400 Frame 500

Figure 3: Selected frames from the synthetic sequence. Each row corresponds to a dif-

ferent camera which, initially, looks at a different face of the cube. We overlay onto each

image a wire-framemodel of the object using the ground-truth parameters (solid magenta)

and the estimated ones (solid blue).

6 Conclusions

We introduced an algorithm for efficiently estimating the 3D motion of a known target

using multiple orthogonal cameras. The algorithm is efficient since a major portion of

the Jacobian involved in the minimisation is precomputed an remains constant over time.

The algorithm relies on an object model based on a textured set of object points, which

is independent of the camera pose. This allows us to precompute off-line the relationship

between object’s motion and the change in image intensities (the image Jacobian matrix),

even for points of the object that are not initially visible. Moreover, we can extend this

approach to multiple cameras due to the independence of the Jacobian matrix of the cam-

era pose. For this to be true, some constraints must be satisfied: a) the cameras must be

orthographic; b) only those pixels whose normal orientation coincides (or is close to) that

of the camera optical axis are eligible for tracking. Neglecting this constrains leads to a

loss of accuracy in the tracking.

Acknowledgements
Authors were funded by the Spanish Ministerio de Educación y Ciencia, under contract

TRA2005-08529-C02-02.

References

[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifiying framework.

International Journal of Computer Vision, 56(3):221–255, 2004.

0 100 200 300 400 500 600
−3

−2

−1

0

1

2

3
ω
x

frame #
0 100 200 300 400 500 600

−0.5

0

0.5

1

1.5

2

ω
y

frame #
0 100 200 300 400 500 600

−3

−2

−1

0

1

2

3

ω
z

frame #

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

t x

frame #
0 100 200 300 400 500 600

−60

−40

−20

0

20

40

60

t y

frame #
0 100 200 300 400 500 600

−40

−30

−20

−10

0

10

20

30

40

t z

frame #

Figure 4: Estimated (red) vs. ground-truth (dotted blue) parameters. Top: Plotted values

correspond to the three values of the exponential map that represents object’s rotation.

Bottom: Plotted values correspond to the object’s 3D translation in the scene.

[2] Simon Baker, Raju Patil, Kong Man Cheung, and Iain Matthews. Lucas-kanade 20

years on: Part 5. Technical Report CMU-RI-TR-04-64, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, November 2004.

[3] S. Benhimane, A. Ladikos, V. Lepetit, and N. Navab. Linear and quadratic subsets

for template-based tracking. In Proc. of CVPR, 2007.

[4] S. Benhimane and E. Malis. Homography-based 2d visual tracking and servoing.

International Jounal of Robotics Research, 26(7):661–676, July 2007.

[5] F. Dellaert and R. Collins. Fast image-based tracking by selective pixel integration.

In ICCV99 Workshop on frame-rate applications. IEEE, 1999.

[6] F. Devernay, D. Mateus, and M. Guilbert. Multi-camera scene flow by tracking 3-d

points and surfels. In Proc. of CVPR, volume II, pages 2203– 2212, 2006.

[7] GregoryHager and Peter Belhumeur. Efficient region tracking with parametricmod-

els of geometry and illumination. Trans. on PAMI, 20(10):1025–1039, 1998.

[8] C. Mei, S. Benhimane, E. Malis, and P. Rives. Constrained multiple planar template

tracking for central catadioptric cameras. In Proc. BMVC, volume II, pages 619–

628, 2006.

[9] Julien Pilet, Vincent Lepetit, and Pascal Fua. Real-time non-rigid surface detection.

In Proc. of CVPR. IEEE, 2005.

[10] Krishnan Ramnath, Seth C Koterba, J. Xiao, C. Hu, Iain Matthews, Simon Baker,

Jeffrey Cohn, and Takeo Kanade. Multi-view aam fitting and construction. Interna-

tional Journal of Computer Vision, 76(2):183–204, Feb 2008.

[11] S. Romdhani and T. Vetter. Efficient, robust and accurate fitting of a 3d morphable

model. In Proc. of ICCV, volume 1, pages 59–66, 2003.

[12] Wolfgang Sepp and Gerd Hirzinger. Real-time texture-based 3-d tracking. In Proc.

of Deutsche Arbeitsgemeinschaft für Mustererkennung e.V., volume 2781 of LNCS,

pages 330–337. Springer, 2003.

[13] L. Vacchetti, V. Lepetit, and P. Fua. Stable 3–d tracking in real-time using integrated

context information. In Conference on Computer Vision and Pattern Recognition,

Madison, WI, June 2003.

A Derivation of the Factorisation Scheme

Equation (12) can be further simplified using the definitions for both constancy equations

and functions f and φ j. First, we assume that derivatives onto the image plane are equal

to derivatives onto the texture map, i.e.,




∂ I j[p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x

j
i



 = ∇Txi for object vertex

i. From our warp definition we have that

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1

= R(t)⊤, and from

equation 2,

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

= R j. Taking partial derivatives of the warp function

w.r.t. the motion parameters we can rewrite the i− th row of equation (12), Ji, as

Ji(t) = ∇TxiR jR(t)
⊤

[

∂R(ω̂x)
∂ω̂x

∣
∣
∣
∣
ω̂x=ωx(t)

xi
∂R(ω̂y)

∂ω̂y

∣
∣
∣
∣
ω̂y=ωy(t)

xi
∂R(ω̂z)

∂ω̂z

∣
∣
∣
∣
ω̂z=ωz(t)

xi I3

]

,

(14)

with I3 being the 3×3 identity matrix. We can reorder this equation as a matrix multipli-

cation in the form:

Ji = ∇TxiR j





x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1 0 0

0 x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1 0

0 0 x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1





·







vec(R(t)⊤Ṙωx(t)) 0 0 0

0 vec(R(t)⊤Ṙωy(t)) 0 0

0 0 vec(R(t)⊤Ṙωz(t)) 0

0 0 0 R(t)⊤







, (15)

where 0 is a padding matrix of zeros of the appropriate size and vec(A) is the vectorised
form of matrix A. Derivatives of the rotation matrix are expressed in dot form, i.e., Ṙωx(t) =

∂R(ω̂x)
∂ω̂x

∣
∣
∣
∣
ω̂x=ωx(t)

. Notice that the rightmost matrix depends on the motion parameters at

time t, but is common to every single vertex in the object. This matrix will be known as

Σ(t). The leftmost matrix depends only on the i− th vertex of the object and its texture.

We can stack all these matrices into a constant matrix M0, such that J = M0Σ(t).

