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Abstract

In this paper we present a scheme for accumulating local visual informa-
tion in 3D, under known motion. Information about the object’s 3D shape
is provided by reconstructing local contour descriptors. This shape informa-
tion is accumulated over time in three ways: 1) disambiguation: erroneous
stereo correspondences that are unsuccessfully tracked are discarded. We
make use of aspect cues to increase the data association selectivity. 2) cor-
rection: the full pose of the reconstructed features is corrected over time
using an Kalman Filter approach. 3) completeness: multiple 2 1

2 D represen-
tations become merged, constructing a full 3D representation of the object.
The described system is evaluated quantitatively on three different scenarios.

1 Introduction
This paper introduce a system that generates an internal representation of unknown ob-
jects under a known motion. First, a set of local contour descriptors, called 2D–primitives,
are extracted from the image, providing a first representation of the 2D shapes. Two such
representations are matched across two views using stereopsis, and 2D–primitives are
matched in both images to reconstruct 3D contours as strings of local features called 3D–
primitives, that provide a first representation of the 3D shapes in the scene. At this stage,
the representation is merely a collection of 3D–primitives, objects and background are not
segmented in any way. By using the motion knowledge provided by the robot, we seg-
ment the object from the scene (by selecting primitives that move according to the robot’s
arm motion) and accumulate the representation. Such an exploratory mechanism enable
the system to explore its environment and learn the shape of the objects that inhabit it.

This paper presents the mechanism used for accumulating the visual representation
over time. Having control over the object provides a very accurate knowledge of its
motion that can be used to track individual 3D primitives. At each frame, new obser-
vations are used to correct the 3D primitives’ full pose and to enrich the representation
with new aspects of the object (e.g., parts that were previously occluded). The mecha-
nism presented herein improves the representation in three respects: (i) Accuracy: The
representation is corrected over time using new observations. (ii) Reliability: Tracking
primitives over time, it is possible to re–evaluate their reliability over time, and to discard
erroneous ones. Because the tracking is done in 3D space, the likelihood for erroneous
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primitives to be tracked successfully is vanishingly small. (iii) Completeness: Through
Manipulation of the object, the system witnesses it under a wide range of viewpoints, and
accumulate 2 1

2 D representations into a full 3D representation. Solutions to this problem
belongs to two groups:

The first group consists of the geometric analytic solutions, including multifocal ten-
sors [6] and bundle adjustment [14]. These techniques are ideal solutions to the problem
and are prominent in the strict batch–SFM scenario. They can be designed to be ro-
bust to erroneous data association (see [14] for a discussion). One major flaw with these
solutions stems from the fact that they are batch processes: all views need to be avail-
able. This can make the problem intractable for large sequences, and implies a delay
in any active system. It has been proposed to split the problem into groups of, e.g., 3
frames, reducing both delay and computational cost. Nonetheless, these approaches face
the dead–reckoning problem: small motion errors accumulate over time to lead to large
localisation errors. Therefore, they generally need an additional global integration stage.

The second group uses various flavours of the Bayesian filtering theory. This provides
an on–line solution by formalising the problem as a Markov process where a state vector
combining the current pose and the landmarks’ bearing can be formalised as the general
Bayesian Tracking problem — see [1] for a review. This theoretical formulation allows
for an optimal solution, i.e., a Kalman filter, if the state vector as a multivariate normal
distribution and if the prediction and observation processes are linear. Kalman filters and
its non–linear derivatives (e.g., Extended or Unscented Kalman filters) have been used
extensively to solve the simultaneous localisation and map–building (SLAM) problem
(see, e.g., [2, 15, 5, 13, 9]).

Because of the on–line constraint, the approach presented in this paper belongs to the
second category. The present scenario is quite different, because the motion prediction
is very accurate, the framerate is high, and a large proportion of the primitives is visible
at any time. On the other hand, because they only encode local contour information,
primitives are not very distinctive. SLAM, in contrast, focuses on scenario where motion
knowledge is inaccurate, successive frames are generally far apart and landmarks are
very distinctive (e.g., SIFT [10]) The differences of the approach presented herein are:
(i) tracking in 3D space: the tracking of the primitives is done using homogeneous 3D
coordinates, and therefore the robot’s arm rigid motion is a linear operation. (ii) data
association in stereo 2D space: 3D primitives are re–projected in both image planes to be
compared with extracted primitives. This allows to reduce the uncertainty generated by
stereopsis. (iii) full pose tracking: because the primitives are local contour descriptors,
they encode local position and orientation. Therefore we use a pair of Kalman filters to
filter the full pose.

The framework is described in section 2, then evaluated on different scenarios in sec-
tion 3, before concluding in section 4.

2 Framework presentation
The framework proposed here integrates visual information over time to improve reli-
ability, accuracy and completeness. The scheme presented herein extracts local image
features called 3D–primitives (see section 2.1). The system then attempts to tracks 3D–
primitives in each new stereo pair of images (see section 2.2.2) using available motion



right image

left image

B. 2D-primitives

C. 3D-primitives

A. original images

Figure 1: Illustration of the primitive extraction stage. A) original images (left and
right); B) extraction of 2D–primitives in both images; and C) stereo reconstruction of
3D–primitives.

knowledge. Matched primitives are corrected over time using Kalman filtering (see sec-
tion 2.2), and their confidence is re-evaluated depending how successfully they have been
tracked since they were first witnessed (see section 2.2.3). Existing primitives whose
confidence fall below a set level are then discarded, while new primitives that were not
observed before are added to the representation.

2.1 2D and 3D Visual Primitives
In this work we use sparse image descriptors called primitives, that exist both in 2D
and 3D space, and were discussed in [8]. In the 2D space, those primitives provide a
condensed representation of image information sparsely sampled along image contours.
In a first stage, linear and non–linear filtering operations are applied to the image (see, e.g.,
[7]), Positions are detected sparsely with sub–pixel accuracy at places likely to contain
edges (see, e.g., [7] for a description), and local information is encoded into the following
feature vector:

π = (x,θ ,φ ,c, f) (1)

where x is the image position determined with sub–pixel accuracy; θ is the local orien-
tation, encoded as a normalised tangent vector; φ is the local phase; c is a dimension 6
vector encoding the HSV colour values on both sides of the contour; and f is the optic
flow vector. In the following we refer to such features as 2D–primitives.

Such 2D–primitives are extracted on stereo pairs of images and are matched using the
epipolar line and similarity constraints (see Fig. 1B, and [12] for an assessment). Pairs
of matched 2D–primitives provide enough information to reconstruct the 3–dimensional
equivalent of a 2D–primitive, denoted 3D–primitive in the following (see Fig. 1C). We
direct the reader to [4, 6] for a description on classical stereo reconstruction and [11] for



the special case of primitives. A 3D–primitive encodes a scene contour’s local position
and orientation along with the local contrast and colour on each side.

Π = (X,Θ,φ ,C) (2)

where X is the position in space; Θ is the 3D orientation of the line; φ is the local phase;
C is a dimension 6 vector encoding the HSV colour values on both sides of the contour.

2.2 3D–primitive’s pose filtering
In this section we present how a 3D–primitive is tracked and how we apply Bayesian
filtering to its pose. The Kalman filter is an optimal derivation of the Bayesian filtering
problem that is limited to filtering state vectors with normally distributed noise when the
prediction and observation can be modelled by linear functions. The 3D–primitives’ full
pose is filtered using a pair of Kalman states. The position and orientation in space are
encoded by a pair of dimension 4 homogeneous vectors (X,Θ). The same filter equations
can be used to filter both position and orientation.

2.2.1 State vector and state prediction

Motion knowledge can come from motor knowledge for example when a robot manipu-
lates an object, embarked sensors for a mobile system, or visual estimation. This motion
knowledge predicts the pose of the primitive at a later time-step. In this work we only
consider a restricted kind of motion, called Rigid Body Motions (RBM). RBM trans-
formation is a linear function in homogeneous spatial coordinates, and therefore can be
directly used in a Kalman filter, leading to the following equations:

ŝt|t−1 = Mt · ŝt−1|t−1 (3)

Σ̂t|t−1 = Mt · Σ̂t−1|t−1 ·M>t +Qt (4)

where s signifies the state, and can either be the 3D position X or orientation Θ as 3D
homogeneous (dimension 4) vectors.

In these equations, the RBM knowledge is encoded as the 4× 4 matrix Mt , and the
prediction uncertainty is Qt = εI4×4, where ε is a small value set to be larger than the
motion prediction error. Because this error is very small, it can be approximated as normal
and isotropic.

2.2.2 Temporal matching

The matching itself is performed by re–projecting both the accumulated Π̂t|t−1 and the
newly reconstructed Πt 3D–primitives on both image planes, and match primitives which
projections are proximate and similar in both — see Fig. 2 Doing the matching in 2D
provides additional robustness to projective deformation and stereo uncertainty while the
necessary selectiveness is preserved by ensuring that the primitives are matched in both
views at each time–step.

The position uncertainty of the 3D–primitives is also re–projected in the image do-
main, into a 2×2 covariance matrix. Using this covariance matrix we estimate the likeli-
hood for the 3D–primitive to find a match at each location by a normal distribution com-
bined with an uniform distribution (that expresses the chance for a correct 3D–primitive



Figure 2: Illustration of the primitives temporal matching.

not to be matched). We will write the fact that a primitive Πi that predicts a primitive Π̂
t
i

at time t is matched (as described above) as µt(Π̂i) and evaluate its likelihood as:

p[µt ] =
1

(2π)
√
|Σx|

e
1
2 (∆x)>Σ

−1
∆

(∆x) (5)

The matrix Σ∆ = Σ̂x + Σx is the sum of the re–projected position uncertainty for both
primitives in this image. Also, (∆x) is the difference between the position of the two
re–projected primitives ∆x = x̂t|t−1−xt where x̂t|t−1 is the predicted position and xt is the
position of the potential match. If the confidence p[µt |(∆x),Π] is larger than the chance
value o = 0.1, the the match is considered valid. Furthermore, the similarity between the
primitives (in orientation, phase, and colour) is also considered, and matches with a too
low similarity (lower than τ = 0.9) are disregarded.

2.2.3 Confidence re–evaluation from tracking

The third corrective mechanism re–evaluates the confidence in the 3D–hypotheses de-
pending on their resilience. This is justified by the continuity assumption, which states
that 1) any given object or contour of the scene should not appear and disappear in and
out of the field of view (FoV) but move gracefully in and out according to the estimated
ego–motion, and 2) that the position and orientation of such a contour at any point in time
is fully defined by the knowledge of its position at a previous point in time and of the
motion of this object between these two instants.

As we exclude from this work the case of independent moving object, and as the ego–
motion is known, all conditions are satisfied and we can trace the position of a contour
extracted at any instant t at any later stage t + ∆t, as well as predict the instant when it
will disappear from the FoV.

We define the tracking history of a primitive Πi from its apparition at time 0 until time
t as:

µ(Πi) =
(
µt(Π̂i),µt−1(Π̂i), · · · ,µ0(Π̂i)

)T (6)



thus, applying Bayes formula:

p
[
Πi|µ(Π̂i)

]
=

p
[
µ(Π̂i)|Π

]
p [Π]

p
[
µ(Π̂i)|Π

]
p [Π]+ p

[
µ̄(Π̂i)|Π̄

]
p
[
Π̄
] (7)

where Π and Π̄ are correct and erroneous primitives, respectively.
Furthermore, if we assume independence between the matches we have, and assuming

that Π exists since n iterations and has been matched successfully m times, we have:

p
[
µ(Π̂i)|Π

]
= ∏t p

[
µt(Π̂i)|Π

]
= p

[
µt(Π̂i) = 1|Π

]m
p
[
µt(Π̂i) = 0|Π

]n−m (8)

In this case the probabilities for µt are equiprobable for all t, and therefore we define the
quantities α = p [Π], β = p

[
µt(Π̂) = 1|Π

]
and γ = p

[
µt(Π̂) = 1|Π̄

]
. We can then rewrite

Eq. (7) as follows:

p
[
Πi|µ̄(Π̂i)

]
=

β m(1−β )n−m
α

β m(1−β )n−mα + γm(1− γ)n−m(1−α)
(9)

We measured these prior and conditional probabilities using a video sequence with
known motion and depth ground truth obtained via range scanner. We found values of
α = 0.2, β = 0.4 and γ = 0.1. This means that, in these examples, the prior likelihood
for a stereo hypothesis to be correct is 20%, the likelihood for a correct hypothesis to be
confirmed is 40% whereas for an erroneous hypothesis it is of 10%. These probabili-
ties show that Bayesian inference can be used to identify correct correspondences from
erroneous ones. When a confidence in an accumulated primitive rises above 0.9, it is
preserved and its confidence is not updated anymore. If it falls below 0.1, its is discarded.

2.2.4 Pose correction

The primitives position and orientation are corrected using the newly reconstructed match
st . The correction is a direct application of the Kalman update step. Because both, the
predicted and the observed states lie in the same homogeneous 3D space, the Kalman
observation function is the identity, and the difference between predicted and observed
states is:

∆s = st − ŝt|t−1 (10)

The innovation matrix is given by:

Sk = Σt|t−1 + Σ̂t (11)

And the optimal Kalman gain is:

Kt = Σt|t−1 ·S−1
k (12)

Finally the updated state is:
st|t = st|t−1 +Kt ·∆s (13)

With an updated covariance:
Σt|t = (I−Kt) ·Σt|t−1 (14)

Those formulae are applied similarly to the position X and the orientation T vectors.
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Figure 3: Pose correction over time, for a pure lateral translation.

(a) position (b) orientation

Figure 4: Pose correction over time, for a pure lateral translation, see Fig. 3.

3 Results
The framework presented in the previous section was evaluated in three different scenar-
ios. The first, artificial scenario features a simple geometric scene, of a moving circle,
where the primitives’ accuracy could be evaluated with precision (section 3.1). The mo-
tion is known. The second scenario features a robot context, where the robot’s arm has
grasped an object and is inspecting it from different viewpoints (section 3.2). The motion
is known from the arm’s actuators with good precision. Finally, in a third scenario stereo
cameras were mounted on a driving car (section 3.3). In this case the car’s motion is
approximated by on-board instruments, but is known to be more unreliable.

3.1 Artificial scenario
As a first evaluation of the scheme, we used two simple artificial sequences generated
using openGL. In this case the motion is known with accuracy, as well as the exact shape
of the object (a circle and a triangle). We used those sequences to evaluate the evolution of
the 3D–primitives accuracy during accumulation. The images and the reconstructed 3D–
primitives are illustrated in Fig. 3, and the primitives’ position and orientation accuracy is
recorded in Fig. 4. It is clear in these plots that the position and orientation error reduces
quickly with accumulation, as well as the variance.
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Figure 5: Accumulated objects (after 70 frames, spanning a whole rotation of the object).

3.2 Robotic scenario
The accumulation scheme was applied to a robotic manipulation scenario. In this sce-
nario, we have a fixed camera and a robotic arm holding an unknown object. The object is
manipulated in front of the cameras such that all its sides become visible, The robot’s arm
motion is known from the actuators with very good precision, making primitive tracking
over time easy. On the other hand, the curved surfaces of the objects make the accu-
mulation more difficult. Also the rotational movement means only half of the object is
visible at anytime, leading to large occlusions. The results for several toy kitchen objects
is shown in Fig. 5. Fig. 5(a) shows one image of each object, being held by the robot.
Fig. 5(b-g) show the accumulated representation of the objects. One can see there that the
full 3D-shape is accumulated, with few outliers. Note that the segmentation of the object
from the background is done implicitly because the background do not move according to
the predicted motion. The robot’s hand is discarded using a simple bounding box, as its
position is always known exactly (namely, at the end of the arm). The blank space in the
representations correspond to the place where the object were held, and could be filled by
manipulating the object a second time, holding if from a different point.



(a) image (b) stereo (c) accumulation 8 frames

Figure 6: Accumulation of visual information in a driving scenario. (a) shows one image
from the video sequence processed; (b) shows the 3D–primitives reconstructed by stereo
only; and (c) shows the accumulated 3D–primitives after 8 frames.

3.3 Driving scenario
We applied this scheme to a driving scenario. In this scenario, two stereo cameras were
fixed on a car driving on a country road. Some motion knowledge is provided by the car’s
instruments, but the recorded motion is limited to the planar components (velocity and
rotation angle) and is known to be inaccurate. Nonetheless, we approximated the RBM
from this motion knowledge. The correction of the 3D–primitives over time prevents the
motion error from breaking the tracking. In this case the motion knowledge is too inaccu-
rate to provide a good correction (the motion uncertainty is larger than the reconstruction
uncertainty), but sufficient for tracking and outlier removal.

In Fig. 6(a) shows one image from a sequence recorded from the inside of a car, while
driving. In Fig. 6(b) shows the 3D–primitives reconstructed using stereo, with some out-
liers due to texture on the road. Fig. 6(c) shows the 3D–primitives accumulated over
8 frames. In the accumulated representation, spurious primitives and erroneous stereo
matches have been discarded. At the same time, 3D–primitives that were visible at dif-
ferent frames are integrated into one representation, showing a longer stretch of the road.
The primitives were matched and tracked accurately despite the motion inaccuracy.

4 Conclusion
Low level image processes suffer from a large amount of noise, uncertainty, and am-
biguity. In this paper, we presented a framework accumulating stereo information over
time and improving the quality of the representation in three respects; 1) the accuracy of
the 3D–primitives’ position and orientation is corrected over time; 2) spurious primitives
and erroneous stereo correspondences are discarded; and 3) 3D–primitives visible under
different perspectives are integrated.

Moreover, using an accumulated representation improves the stability of the repre-
sentation over time. When new parts of the scene becomes visible they are naturally
integrated in the scene, and when parts become occluded they become preserved in mem-
ory.

Because of all that, we believe that temporally accumulated visual representation is a



better basis for high level vision processes to be based on.
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