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Abstract

This paper presents a novel level set method with shape priors. The
method keeps the level set deformations and the integration of the prior in-
formation as separate processes and hence it can be used with any level set
formulation without complicating the level set functional. The method does
not need any explicit training phase and by the addition of an appropriate
deformable contour matching method, it can be used for any specific appli-
cation. The system is tested and verified by the task of extraction of the inner
and outer heart walls (endocardium and epicardium) from the echocardio-
graphic images of the left ventricle.

1 Introduction
Level set methods [1] are introduced [2] to computer vision for recovering shapes of
objects in two or three dimensions. The basic idea of level set methods is embedding
the shape of the objects as the zero level set of a higher dimensional surface. The higher
dimensional surface evolves under the influence of the ideal image and surface features
without violating the surface regularity. While the surface evolves, the zero level set
contours might develop singularities and sharp corners or they might change topology,
which are not easily achievable by using classical deformable contours or snakes [3].

It is argued that [4] the main advantage of level sets over deformable contours comes
from their ability to deal with very local image properties. The level set interfaces can
deform to recover contours in pixel-wise detail. However, the very local nature of level
sets becomes an obstacle in cases where global or prior information needs to be imposed.
This problem with the level sets is amplified especially for medical imaging applications
where the images are very noisy and expert knowledge about the desired contours needs
to be integrated into the contour extraction process. For this reason, incorporating global
or prior information into the level sets has been an active research area. Leventon et al.
[5] have used prior knowledge by defining a Gaussian probability distribution over the
variances of a set of training shapes without addressing the scale and pose variations.
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Chen et al. [7] used an average model as prior in its implicit functional. Shape priors
for level sets [4] are also used where a prior is imposed by direct comparison between the
level sets of prior models and the evolving interface. Most of the existing level set systems
with shape priors test their systems on medical images such as brain [5] and cardiac [6]
images.

The common technique used by the above methods seems to be the addition of a new
functional into the level set formulation which would integrate the global or prior infor-
mation. The level set front deformations are affected by the new functional in a way
that the shapes are always similar to previously learned or trained contours. It can be
argued that this approach is borrowed from deformable contours because almost every
deformable contour with prior information adds a new energy term, e.g. [9], to the main
functional or rewrites the main functional so that global or prior information is built into
the functional, e.g. [8]. Although this borrowed method works up to a degree with the
level sets, the overall level set surface functional becomes too complicated to impose scal-
ing, translation and rotation based constraints at the same time. Therefore, it is difficult to
design and formulate new prior functional terms with the level sets. In addition, the new
terms added to the main surface formulation might have undesirable effects on the over-
all system such as numerical interference of the prior term and the other level set terms.
Finally, the resulting systems are not efficient for computer implementation because level
sets are already demanding in terms of computing power requirements. The newly added
functional terms increase these power requirements even more.

(a) (b)

Figure 1: (a) Example short axis view echocardiographic image. The high levels of ul-
trasound noise, missing wall sections on the image and reflections from the unrelated
structure are the main problems of images. (b) The same image with endocardium and
epicardium marked by an expert.

In this paper, we present a novel prior shape based level set method that does not mod-
ify or rewrite the basic level set functional. Our method incorporates the prior information
into the surface deformation process by regularly re-initializing the surface under the in-
fluence of the prior information. The re-initialized surface in turn affects the deformations
of the level set front on the image, which results in a final boundary that shows the in-
fluence of the local image features as well as global or prior model characteristics. The
method can be used with any level set formulation without complicating the overall level
set functional. In addition, the method does not significantly increase the computational
power requirements while maintaining the scale, rotation and translation independency



using appropriate contour matching methods. Furthermore, no explicit training phase is
required because the model contours are directly employed during the level set surface
evolution process. Finally, the lack of explicit training phase makes it possible to incre-
mentally add new model contours to the system without any penalty.

As the test bed application, we choose the recovery of the inner and outer heart walls
(endocardium and epicardium) from the echocardiographic images of the left ventricu-
lar (LV) short-axis transthoracic views during the cardiac cycle (Figure 1). Recovery of
the cardiac borders poses several challenges for the computerized automation due to high
levels of ultrasound image noise, missing wall sections, and unrelated structure around
the heart walls. As expected, the level set method without any prior or global information
would recover incorrect wall positions and the recovered contours would go into topolog-
ical changes which are not desirable for the task of heart contour extraction process. Most
of these problems can be addressed by incorporating expert knowledge as prior informa-
tion into the heart wall extraction process. The prior knowledge would help the system
differentiate between related and unrelated structure. The prior information also makes
it possible to fill the contours for the missing sections of the cardiac wall. Therefore, it
would be a very good environment for testing and verification of the proposed ideas.

The paper is organized as follows: The level set method formulation is presented in
Section 2. Integrating the shape prior into the level sets and level set re-initialization are
introduced in Section 3. Section 4 includes the experiments performed to test the validity
of our method. Finally, we provide concluding remarks in Section 5.

2 The Level Set Formulation
The level set approach evolves a 3D surface by embedding objects into the zero level
of the surface. The proposed heart wall extraction system is based on two deformable
contours evolving on the echocardiographic images. The surface is evolved in a way that
the contours move towards each other until the contours stop at the boundary positions.
Although this paper provides the formulations for extracting inner and outer heart walls,
the system can be applied to other level set applications by modifying the formulations.

We define two closed contours cendo(t) and cepi(t) on ℜ2 that evolve with time t.
cendo(t) is used for extracting endocardium and cepi(t) is used for extracting epicardium.
Consider C as the set of points on cendo(0) and cepi(0). Let s be a signed distance function:

s(x) =

 0, if x ∈ C
−d(x), if x is outside cendo(0) but inside cepi(0)
d(x), otherwise,

(1)

where d is the shortest distance to C from point x ∈ ℜ2. The time dependent surface
φ(x, t = 0) is defined by

φ(x, t = 0) = G(α |s(x)|)∗ s(x), (2)

where G(x,σ) is the two dimensional Gaussian with variance σ2, α > 0 is a weighting
constant and * is the convolution operation. It can be seen from Equation 2 that the



contours cendo and cepi are the zero level set of φ at t = 0.

C = (x |φ(x, t = 0) = 0). (3)

The surface φ moves under the influence of geometry, position and image data. While
φ deforms, the contours cendo and cepi also move to find the desired wall boundaries.

In this study we used variational level set formulation presented in [10]. The varia-
tional level set formulation employs the 3D surface φ , the internal energy term P(φ) and
the external energy term εm(φ) to make up the level set variational energy function ε(φ) :

ε(φ) = µP(φ)+ εm(φ), (4)

where µ is a parameter which controls the weight of the internal energy term in the overall
contour extraction process. The internal energy term penalizes deviation of the level set
function from signed distance function which is desired to satisfy |∇φ | = 1 in Ω ⊂ ℜ2.
Internal energy term function is:

P(φ) =
∫

Ω

1
2
(|∇φ |−1)2dxdy. (5)

The external energy term is used for moving the contours towards the object bound-
aries. The external energy term employs length and area of the zero level set of φ by using
edge indicator function defined by

g =
1

1+ |∇Gσ ∗ I|2
. (6)

For details of the variational energy formulation, see [10]. Although we use the varia-
tional level set formulation described above because of its advantages like using large time
steps and being incomplex, our system can also be used with any level set approaches with
simple modifications.

3 Level Sets with Shape Priors
The classical level set methods employ the local image characteristics for pixel-wise de-
formations of surfaces. However, in many applications the local characteristics are not
always sufficient to extract object boundaries because of the image noise and parts un-
related with object boundaries in the images. Therefore, the level set must also employ
global or prior knowledge besides the local characteristics especially in medical imaging
applications where the expert knowledge needs to be integrated into the contour extraction
process.

Our level set with prior information method is based on the idea of regularly re-
initializing the surface under the influence of the shape prior. The proposed method
employs two repeating phases. In the first phase, the surface evolves on the echocar-
diographic image according to the classical level set method. In the second phase, the
level set surface borrowed from the evolving process is re-initialized under the influence
of prior information. These phases follow each other until the desired contours are found.



3.1 Integrating the Shape Prior into the Level Set Surface
Our method does not use any explicit training phase to incorporate prior knowledge into
the level sets. The model contours are obtained from experts and these contours are
directly used in a level set surface φ re-initialization phase. After the re-initialization, the
new surface φ can be evolved with any level set algorithm to extract the desired contours
on the images. The main advantage of this technique is that the operations of surface
evolution and the incorporation of the prior information are completely separated, which
makes our system applicable to any level set algorithm. Establishing scale, rotation, and
translation independent constraints in the level set formulations is not a trivial task. By
isolating the prior information integration from the level set surface deformations, our
system becomes architecturally modular and simple to implement.

Our integration of the shape prior knowledge into the level set surface can be viewed
as taking a level set surface φ input with zero level set Cinput and producing another level
set surface φ out put with zero level set Cout put such that the zero level set Cinput is deformed
under the influence of the expert contours. Therefore, our prior information integration is
a form of establishing contour matches between Cinput and the expert contours. In order
to produce Cout put , we also define the deformation procedures between Cinput and the best
matching expert contour. The final surface φ out put is simply the signed distance function
produced with the zero level set Cout put .

Let φ input be a level set surface. Considering the heart wall extraction problem, let
cinput

endo and cinput
epi be the inner and outer contours of the LV on the zero level set Cinput

of φ input . Suppose ei
epi is the epicardium contour and ei

endo is the endocardium contour
delineated by expert i, where 0 < i≤ n and n is the number of experts. We need to find the
expert contours ei

epi and e j
endo that produce the smallest difference when compared to cinput

endo

and cinput
epi . Unfortunately, this comparison with input contours cannot be directly done

due to scale, rotation, and translation differences. However, by taking advantage of the
convex nature of the heart walls, we can use a very practical deformable contour matching
algorithm to find the closest expert contour-input contour pairs. Although this deformable
contour matching algorithm is developed specifically for LV heart wall extraction task,
it does not make our prior shape based level set approach specific for this task. Any
deformable contour matching algorithm can be switched with our matching method to
apply our level set method for other applications.

In order to perform the deformable contour matching between expert contours and
the input contours, we first translate the center of gravity positions of all contours to
origin and then we express the contours in Polar coordinates ((θ ,r) space). We define two
functions Rk(c) and Θk(c) that returns the r value and θ value of the kth point of contour
c, respectively. Figure 2(a) shows the Polar representation of cinput

endo and e j
endo for j = 1,2,

and 3. These steps remove the translation differences between the contours.
For the heart wall extraction task, the rotational differences between the contours can

be neglected because the short axis LV images of the heart are formed by holding the
ultrasound transducer at a specific angle. For this reason, the ultrasound LV images are
rotationally registered automatically and no explicit rotational matching is required.

In polar coordinates, the scale matching between the contours can be done by for-
mulating a match function between the r components of the contours. If there is a uni-
form scaling between cinput

endo and e j
endo, we then find the average values of Rk(c

input
endo ) and

Rk(e
j
endo) for all available k values. The ratio of average r values between these contours



would produce the uniform scale difference.
In order to use a more flexible scaling algorithm, we take a piecewise uniform scaling

approach. Instead of calculating the average r values for the whole contour, we use only
a neighborhood of contour positions of size m. These local average r values are then
compared between the contours to find the local scaling amount.

S(c1,c2,θ) =

m/2

∑
i=−m/2

Ri(c1)

m/2

∑
i=−m/2

Ri(c2)

(7)

where θ = Θk(c1) = Θ j(c2).
Once the local scaling factors are calculated between two contours, one contour can

be transformed to the other by multiplying the r positions of the contour with the local
scaling factors. Given two contours c1 and c2, we can produce the transformed contour T
by deforming c2 to c1 using formula

Rk(T ) = R j(c2)S(c1,c2,θ), (8)

where θ = Θk(t) = Θ j(c2) for θ = 0...2π .
Each expert contour e j

endo and e j
epi is deformed to cinput

endo and cinput
epi respectively using

the transformation Equation 8. Figure 2(b) shows expert contours e j
endo deformed to cinput

endo
for j = 1,2, and 3.

The transformed contours are compared against the input contours and the ones that
produce the smallest difference are chosen as the Cout put contours. The comparison be-
tween two contours is done in the Polar coordinates using the formula

D(c1,c2) =
2π

∑
θ=0

∣∣Rk(c1)−R j(c2)
∣∣ , (9)

where θ = Θk(c1) = Θ j(c2).
Finally, we construct the surface φ out put by embedding the contours Cout put into the

zero level of the surface according to the Equation 1.

3.2 The Level Set Algorithm

Given the echocardiographic image I, cinput
endo (0) and cinput

epi (0) are initialized on I at t=0.

cinput
endo should be placed inside the endocardium and cinput

epi should be placed outside the
epicardium. Although we place them manually, it can be done automatically by perform-
ing optic flow analysis of the heart walls.

In the first phase of the system, the surface φ is constructed using Equation 1 by
embedding cinput

endo and cinput
epi into the zero level of φ . Then φ is evolved on echocardiogram

I by calculating the level set functional including the internal and external energy terms
(Equation 4) until t reaches a threshold value (Figure 3(a)) . The two new closed contours
cinput

endo (t) and cinput
epi (t) are the zero level set of the evolved surface.
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Figure 2: (a) The endocardium contours of experts e j
endo and the zero level inner contour

cinput
endo (b) The deformed expert contours e j

endo and the zero level inner contour cinput
endo

Phase 2 takes the newly formed surface φ with its zero level C and uses them as the
input surface and the input contours for the shape prior integration process defined in
Section 3.1 and creates the new surface φ out put using Equation 1 (Figure 3(b)).

The surface φ out put is used to re-initialize two new contours on image I and phase 1
repeats. If the contours stop deforming, the evolution is complete and the cardiac contours
are the zero level set of the final φ ; otherwise phase 2 repeats.

4 Experiments and Validation
To validate and verify our system, we used real echocardiographic images. The system
is tested on 20 different echocardiogram images. Four different epicardium and endo-
cardium contours for each image are traced by four different human experts without see-
ing each others results. The images are 190 by 240 pixels in size.

The results we have found are compared with the experts’ delineations because it is
not easy to obtain ground truth for echocardiograms. The delineations of experts are also
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Figure 3: Shape prior based level set method

compared with each other to obtain the variation between experts. The average pixel
errors of 20 different endocardium and epicardium contours are shown in Table 1.

Table 1: Average pixel errors for endocardium and epicardium of 20 different echocar-
diograms

Endocardium Errors Epicardium Errors
Exp 2 Exp 3 Exp 4 Auto Exp2 Exp3 Exp 4 Auto

Exp 1 3.49 3.07 4.21 4,66 3.16 3.13 7.08 5.44
Exp 2 3.31 4.07 5.03 3.20 7.11 6.18
Exp 3 3.66 4.85 7.00 5.59
Exp 4 5.03 5.80

Figure 4 shows the contours detected by our system for a typical LV image and Table 2
shows the average pixel errors between the experts and our contours for the same image.
The average pixel errors of experts vary between 1.47 and 2.73 for endocardium and
1.92 and 6.75 for epicardium. The automatically extracted outer contours are similar to
expert detected contours and automatically extracted inner contour is nearly within 1 pixel
distance from the inter expert variation. We found the results very close to expert detected
contours and they are very encouraging.

Table 2: Average pixel errors for the Figure 4
Endocardium Errors Epicardium Errors

Exp 2 Exp 3 Exp 4 Auto Exp2 Exp3 Exp 4 Auto
Exp 1 2.08 3.63 1.82 4,07 2.57 1.92 6.18 3.81
Exp 2 2.73 1.47 3.89 3.03 6.17 4.31
Exp 3 2.27 3.51 6.75 4.49
Exp 4 3.32 4.65
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Figure 4: (a) The initial contours; (b) Evolving contours; (c) Extracted contours at the end
of evolution (d) All of the Expert contours; (e,f,g,h) Red contours are the automatically
detected contours, other contours are expert detected contours

5 Conclusions
We presented a novel level set based contour extraction method with prior knowledge.
The proposed method deals with both local and global image properties by incorporating
the prior information into the surface deformation process and by regularly re-initializing
the surface under the influence of the prior information. Our method does not modify the
level set formulation, so the system can be used with any level set method. Moreover, the
method does not significantly increase the computational cost while making it possible to
keep scale, rotation and translation independence features.

We applied our system to the echocardiographic images for extracting cardiac walls.
We presented a double evolving contour approach in which the expert contour knowledge
is used as shape prior. The presented system is not specific for heart wall extraction. By
providing application specific contour matching methods, the system can be ported to any
challenging applications. The system is validated on real echocardiographic images and
we compared our results with expert detected contours. The results are very promising
and we plan to apply our system to other medical imaging applications.
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