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Abstract

This paper introduces a novel feature extraction algorithm called FEUDOR.
The features extracted by this method are octagonal homogeneous regions
that have different mean square difference compared to their surrounding
area. By using integral images we have implemented this algorithm effi-
ciently. We have shown that the repeatability score of FEUDOR under vari-
ous image transformations is comparable and in some cases better than other
existing algorithms.

1 Introduction

Finding correspondences between different images of the same scene is a requirement
in many application areas including object recognition, image retrieval, 3D scene recon-
struction and object tracking. In recent years research has focused on extracting features
from each image first, and then by matching these features, correspondences between
images is found. By a feature we mean either a point (Interest Point) or a patch of pix-
els (Region of Interest) which can be reliably extracted and matched between different
images. A good feature is one that is repeatable and distinctive. Repeatable means that
the same feature can be extracted from different images of the same scene. Distinctive
features are those that will only match closely to corresponding features from another
image.

Our aim in this paper is to extract features that would primarily be useful in solving two
challenging problems. One is matching two images of the same scene with very different
viewing angle, so-called wide-baseline matching. The other problem is matching objects
seen by cameras with non-overlapping fields of view.

In solving any of these problems there are several issues that need to be addressed first.
For example, a wide view point angle will give rise to geometric distortions. Also, in-
crease in the view point angle, will increase occurrences of self-occlusion. At the same
time the background of objects will be very different as the view point changes. Finally
the illumination that the object is viewed under can vary between images.

To extract highly repeatable features useful in wide-baseline matching, algorithms have
been developed that extract features that are invariant to scale, rotation or affine transfor-
mations. However we note that making features invariant to transformations that do not
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actually occur in an image reduces the distinctiveness of features. In section 2, we will
discuss some previously proposed feature extraction algorithms that are invariant to some
or all of the transformations mentioned above. As the background of objects will often be
completely different when viewed from different angles, we would like our features not
to cover any part of the background. Having features based on the neighbourhood of an
object’s corner within an image is therefore undesirable.

Our main contribution in this paper is a novel feature extraction algorithm (FEUDOR)
that extracts homogeneous regions that differ from their surrounding. In extracting such
features we make use of the information available in a RGB color image. Our features
are invariant to scale change but only approximately to rotation. FEUDOR can be imple-
mented in an efficient manner which will be explained later in 3.3.

2 Related Work

Many feature detectors begin by identifying interest points in the image and then de-
termine a feature from the neighbourhood of the point. One of the early Interest Point
detectors that remains widely used is the Harris corner detector [2]. It detects corners
by looking for regions whose local auto-correlation function has high curvature in both x
and y direction. Many algorithms have subsequently been developed that have either used
Harris corners as a first step in extracting features or have modified the detection method
described in [2] .

The Harris measure used for extracting corners is not scale invariant. Mikolajczyk and
Schmid [6] introduced a scale-adapted Harris measure that uses the determinant of the
Hessian matrix of the image to identify Interest Points. For each Interest Point it then
assigns a scale at which the Laplacian is maximised. In [4], Lowe approximated the
Laplacian with the Difference of Gaussian function resulting in improved speed. Re-
cently, Bay et al. [1] introduced the Fast Hessian Detector; in their method, they rely
on the determinant of the Hessian matrix to select both the location and the scale for the
Interest Points. They also use integral images to compute box filters, which are used to
approximate the Gaussian second order derivative used in calculating the Hessian matrix.
By this mean they have substantially improved the speed of extracting features without
degrading the performance.

By successively thresholding an image, Maximally Stable Extremal Region (MSER) [5]
extracts regions where the rate of change of area with threshold value is zero. The al-
gorithm proposed by Tuytelaars and Van Gool [8], first finds interest points using Harris
corner detector, but then moves along the edges adjacent to each corner, to extract parallel-
ogram shaped regions. Kadir et al [3] introduced a method for extracting salient regions.
In their algorithm, Shannon entropy of local image attributes (e.g. intensity or color) is
calculated over a range of scales. Regions of interest are selected to maximise the entropy
as a function of scale.

A performance evaluation of several algorithms was presented by Mikolajczyk et al. [7].
The repeatability and matching score of each algorithm was calculated under various im-
age transformations, such as view point change and scale change. The overall conclusion
of the test was that current algorithms are often complementary to one another and that
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Figure 1: An arbitrary octagon of size k and m concentric octagons centred on the same
pixel is shown on the left. For each octagon, our measure M, is evaluated between the
octagon Ω(α ik,x) and the octagon Ω(βα ik,x) surrounding it (as shown in the image on
the right).

their relative performance was scene-dependent. However, MSER and Hessian Affine
detectors were the two algorithms that consistently gave good results in most of the tests.

3 FEUDOR

3.1 Measure

When an object is seen by two cameras with different view points, it is very likely that the
background of the object is not the same in different views. A good feature would be one
that corresponds to a distinctive region within an object without containing elements of
the background. The type of feature that we aim to extract, is a homogeneous region that
is different from its surroundings. To characterise a region being different, we introduce
a measure that finds the mean square difference between the pixel values within a region
and mean pixel values of a region surrounding it. If we consider Γ(1) be a region with
mean RGB value µ(1) and Γ(2) the region surrounding Γ(1), with mean µ(2) , then we
introduce our measure, M, as:

M(Γ(2);Γ(1)) =
1

|Γ(2)| ∑
x∈Γ(2)

(
(ω(x)−µ(1))T (ω(x)−µ(1)

)
(1)

=
1

|Γ(2)| ∑
x∈Γ(2)

ωT (x)ω(x)−2(µ(2))T µ(1) +(µ(1))2 (2)

Where |Γ(2)| is the number of pixels in the region Γ(2) and ω(x) is a 3×1 column vector
containing the RGB values of any pixel x. Thus M(Γ(2);Γ(1)) gives a measure of how
dissimilar Γ(2) is from the mean of Γ(1). For the particular case Γ(2) = Γ(1), M(Γ(1);Γ(1))
is the variance of the region Γ(1).



To achieve rotational invariance, many algorithms have started by extracting circular re-
gions. However to reduce computational complexity we can approximate a circle with
another geometric shape (such as square or octagon). We have opted to use regular oc-
tagons as they closely approximates a circle. In the rest of this paper, the “size” of an
octagon denotes its diameter.

For each pixel position, x, in an image, we associate an octagon of size k, centred on pixel,
Ω(k,x). We evaluate M between this octagon and an annular region of size βk surround-
ing it, Ω(βk,x). The choice of β determines how much of the background is taken into
account when evaluating M. As we are interested in extracting regions at various scales,
we repeat the above steps with m more octagons of size α ik, 1≤ i≤m, as shown in Figure
1(a). The choice of α determines the sampling density in the scale space. M is evaluated
between each of these octagons, Ω(α ik,x), and their respective surrounding octagon of
size βα ik, Ω(βα ik,x), as in Figure 1(b). Then for any region, Ω(α ik,x), and the region
surrounding it, Ω(βα ik,x), we define the ratio, D, as:

D(Ω(α ik,x)) =
M(Ω(βα ik,x);Ω(α ik,x))
M(Ω(α ik,x);Ω(α ik,x))

(3)

Our extracted features are those regions for which D is maximum in both scale, i, and
space, x. In order to determine the scale of each feature more accurately, we perform
quadratic interpolation in the scale space, to better estimate the scale at which D peaks.
In Figure 3 we have shown an example of how D varies as the scale changes.

3.2 Cleaning-up Features

The procedure described above normally extracts a large number of features which is
undesirable. Therefore we apply a selection procedure to eliminate features that are not
well localised. We choose an octagon, only if two of its opposite sides lie next to a
boundary of a region. In Figure 4(a) we have shown examples of some features that are
not well localised. We can see that only one side of the extracted octagons lies next to the
boundary of a region. In (b) however we have shown examples of regions that we would
like to keep. For each of the extracted octagons, at least two opposite sides lie close to the
boundary of a region. To identify any such octagons, we take the following steps:

1. Expand and shrink each side of the octagon, calculating D at each instance (includ-
ing D at the original size)

2. Based on the three values of D, determine whether a peak exists (if the peak does not
lie within the three D values, use quadratic interpolation to determine the position
of the peak)

3. Calculate the peak’s size ratio (which is defined as the ratio between the size of
the octagon at which the value of peak D drops by 1√

2
and the size of the original

extracted octagon)



4. Keep an octagon only if at least two opposite sides of the octagon, achieve a narrow
peak (i.e. small size ratio) during steps 1-3

During experimentation we have noticed that image noise can give rise to flat peaks in the
variations of D as a function of scale. Therefore we have included the condition of peak
size ratio in step 4, above, to eliminate any such peaks. With experimentation we have
decided to classify a peak as narrow if its size ratio is less than 2.7.

(a) (b) (c) (d)

Figure 2: A synthetic image and features extracted by (a) MSER, (b) SURF, (c) FEUDOR.
Image (d) shows a subset of FEUDOR regions to highlight the difference between the type
of regions extracted by FEUDOR compared to SURF or MSER.

In Figure 2 we have shown a synthetic image which is comprised of three concentric
squares of colors green, orange and grey on a white background. We have used this
image to highlight the differences between the types of features extracted by various al-
gorithms. In particular we have shown the features extracted by (a) SURF, (b) MSER and
(c) FEUDOR.

SURF and MSER both operate on intensity images. If the synthetic image shown in Fig-
ure 2 is converted to gray scale, the difference between the different colors of the squares
would not be obvious. For this reason we can see that MSER has extracted only one fea-
ture which corresponds to the boundary between two of the inner squares. The features
extracted by SURF are concentrated around the corners of the outer square. FEUDOR on
the other hand operates on color images. It has therefore extracted features corresponding
to individual squares as well as the combination of the squares. A subset of features ex-
tracted by FEUDOR is shown in (d) to highlight features that correspond to such regions.

As we mentioned before, for some particular applications such as wide-baseline matching
or finding correspondences between images seen by cameras with non-overlapping fields
of view, features that do not contain elements of the background are desirable. However
we can see for example that most of the features extracted by SURF are concentrated
around the corners and they also contain elements of the background. In contrast features
extracted by FEUDOR do not contain element of the background at all. This shows that
FEUDOR features have the potential to be useful in such applications.

In Figure 3, we have demonstrated an example of a region extracted by FEUDOR in a
real image. The blue octagons in the left image represent the concentric octagons centred
on a manually selected pixel. Variations of D as the size of the octagons increases has
been shown on the right. The red octagons are ones at which D peaks in the scale space.



(a) (b)

Figure 3: (a) concentric octagons (blue) centred on a pixel.(b) variation of D as the size of
the octagons increases. The red octagons in (a) represent the ones at which the D peaks.

Here we can see an instance at which variations of D as a function of scale has achieved
multiple peaks which corresponds to features being extracted at multiple scales. Figure
4(b) and (c) show a selection of features extracted in two different sets of images. We can
see that the extracted features are indeed regions that differ from their surroundings.

(a) (b)

(c)

Figure 4: (a) type of regions aimed to be deleted by the procedure introduced in 3.2. (b)
and (c) a selection of features extracted on two sets of images.

3.3 Implementation

Use of integral images was introduced by Viola and Jones [9] to evaluate some simple
features useful in face detection. Using integral images, sum of the pixel values within



Figure 5: L(x) and R(x) denote the upper left triangle and upper right triangle integral
images.

any rectangle, can be calculated with 2 additions and 2 subtractions. Given an image I,
with pixel coordinates u = [uv]T , the corresponding integral image, S(x), is defined as:

S(x) = ∑
x≤u,,y≤v

I(u) (4)

To calculate D (eq.3) we need to calculate M for two octagonal regions. For evaluating M
(eq.2), mean values and mean squared values of the pixels within each octagonal shaped
region has to be computed. By using integral images we have improved the speed of
our algorithm substantially. To find the sum of the pixels within an octagonal region,
we additionally define R(x), the Right integral image as the sum of the pixels within the
upper right triangle and L(x), the Left integral image as the sum of the pixels within the
upper left triangle (as shown in Figure 5):

R(x) = ∑
u≤x≤v+u−y

I(u) (5)

L(x) = ∑
y−v+u≤x≤u

I(u) (6)

Then, the sum of the pixels within an octagon with corners denoted by a,b,c, . . . ,h can
be found with only eleven addition/subtraction as follows:

Pa,b,...,h = S(a2)+R(a3)−R(b4)−L(c2)−S(d1)+L(d2)+S(e) (7)
+R(e4)−R(f4)−L(g3)−S(h3)+L(h3) (8)

where subscripts 1, 2, 3, 4 denote the pixels immediately to the left, upper-left, up and
upper-right side of a corner pixel.

To further reduce the computational complexity, we can choose β = α p, 1 ≤ p ≤ m−
p. Although we have only implemented our algorithm in MATLAB, the extraction of
features is still done rather quickly. On an Intel, P4 2GHZ, 2GB RAM, for a 800× 600
pixel image, such as the Graffiti scene as shown in Figure 4, around 1300 features has
been extracted in under 25 seconds.



4 Performance Comparison

4.1 Evaluation Method

As explained before, one of the criteria for a good feature is that it has to be repeatable.
For evaluation of our algorithm in terms of repeatability, we have used a similar method-
ology to that described by Mikolajczyk in [7]. In his proposed procedure, two regions
are considered to correspond if their overlap error as defined below, is less than a certain
threshold ε0 (usually chosen to be 40%):

1−
Eφa∩E(HT φbH)

Eφa∪E(HT φbH)
< ε0

Where Eφ is the elliptical region containing a feature and H is the homography relating
the two images to each other.

In [7], before calculating the overlap error, a scale factor is applied to both regions which
forces the feature region in the target image to have a fixed size of 30 pixels. This scal-
ing procedure eliminates an unfair advantage that would otherwise be given to feature
extraction methods that artificially enlarge the distinctive regions detected in an image.
However it also introduces a scale-dependent treatment of region location errors which
is undesirable. Since FEUDOR does not enlarge its detected regions, we have chosen to
omit the scaling step from the evaluation procedure. We define the "repeatability score"
as the ratio between the sum of the feature-to-feature correspondences in the two images
and the total number of features located in the portion of the scene that is present in both
images.

The test images used during this performance evaluation were the Graffiti (view point
change), Wall (view point change) and the Boat (zoom and rotation) scene provided by
Mikolajczyk [7]. For our algorithm we chose β = α =

√
2. We have deleted features

that their peak’s size ratio was more than 2.7. We have compared the performance of our
algorithm against SURF and MSER. In both cases we have used the default parameter
settings given by the author, excluding any parameters used for arbitrarily scaling of the
extracted features. For the evaluation with set the region overlap error threshold to %40.

4.2 Results

In Figure 6, we have shown the result of the repeatability score of FEUDOR compared
with MSER and SURF. Figure 6(a) and (b) show the result of the repeatability score as
the view point angle increases. In (a) our algorithm performs worse than MSER but al-
most identical to SURF. We can see that as the view point angle goes beyond 40◦, the
performance of both SURF and FEUDOR degrades rapidly. For our part, one possi-
ble explanation could be the fact that in the Graffiti scene, in addition to the view point
change, there is an element of camera rotation, which becomes more severe as the view
point angle increases. Our algorithm is not designed to be invariant to camera rotation
and therefore is not able to cope with this type of transformation. However in (b) where



Figure 6: From left to right, top to bottom. Repeatability score under the following
transformations: (a) view point change (Graffiti scene) (b) view point change (Wall scene)
(c) zoom increasing (Boat Scene) (d) Light decreases (Leuven Scene).

there is no camera rotation as the view point angle increases, we can see that FEUDOR
almost always performs better than SURF and MSER.

Figure 6(c) shows the repeatability score as the scale of the image changes. We can see
that FEUDOR performs better than both MSER and SURF. However we can see that
performance of all three algorithms degrade faster than expected as scale increases. This
becomes more evident when our result is compared with those presented in [7] and [1].

This discrepancy is mainly due to the different ways of calculating the repeatability score.
If image 1 is the original image used in the scale change test and image 2 is a zoomed
out version of image 1, we calculate the repeatability score as the number of correspon-
dences in both images divided by the sum of the overall number of features present in
both images. When features present in image 1 are projected to image 2 using the ho-
mography, the size of the features will become smaller. This in turn will result in higher
overlap errors and therefore lower repeatability score. However in [7], in calculating the
repeatability score, only features in image 2 are projected to image 1, not the other way
around. In doing so they have avoided this problem. In any case, the result presented in
(c) shows that features extracted by FEUDOR are as scale-invariant as those extracted by
MSER and SURF.

Finally in (d) we have shown the repeatability score as lighting decreases. Overall FEU-
DOR has higher repeatability compared to both MSER and SURF under lighting change.



5 Conclusion

In this paper we have introduced a novel scale-invariant feature extraction algorithm
called FEUDOR that extracts homogeneous regions that are different from their surround-
ings. By using integral images our algorithm was implemented efficiently. The average
computation time on MATLAB is about 15-25s. We have also shown that performance of
FEUDOR under various image transformations, is better than some of the existing algo-
rithms such as SURF and MSER except on occasions where there is an element of camera
rotation present. However this was expected as FEUDOR is not designed to be invariant
to camera rotations.

By using color images, FEUDOR extracts features that are otherwise indistinguishable
when viewed in an intensity image. Moreover unlike many other algorithms, the features
extracted by FEUDOR are not concentrated around corners. Most features are within
boundaries of a region in the image. So that regions contained in each feature does not
contain a significant element of background. This property will make FEUDOR features
a good choice for finding correspondences between images viewed by cameras with non-
overlapping fields of view and also Wide-baseline matching scenarios.
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