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Abstract

The recent literature has shown that it is possible to sdteemonocular
Simultaneous Localization And Mapping using both undedfgatures ini-
tialization and an Extedend Kalman Filter. The key concepachieve this
result, was the introduction of a new parametrization dallaified Inverse
Depth that produces measurements equations with a higleeeddinear-
ity and allows an efficient and accurate modeling of uncetigs. In this
paper we present a monocular EKF SLAM filter based on an atioen
parametrization, i.e., the Inverse Scaling Parametanatiharacterized by a
reduced number of parameters, a more linear measuremeet,rand a bet-
ter modeling of features uncertainty for both low and highafiax features.
Experiments in simulation demonstrate that the use of therge Scaling
solution improves the monocular EKF SLAM filter when compuhwéth the
Unified Inverse Depth approach, while experiments on retd dhow the
system working as well.

1 Introduction

Recent works in Simultaneous Localization And Mapping (M)4ave presented inter-
esting results using a monocular camera; a simple and lovepsensor that allows to
estimate the bearing of interest points extracted from agarand, by means of camera
motion and triangulation, the whole 3D structure of the emwinent [4]. Several issues
affect this approach to SLAM and among them a preminent omepgesented by the
initialization and uncertainty modeling of the 3D eleméntthe map since, from a single
frame, we can not estimate their real depth. Moreover, thee @& affected by uncertain-
ties that strongly depend on the observer-to-featurertistand this should be taken into
account when modeling feature uncertainty too.
In their first work, Davison et al. [4], by using an extendedrKan filter to perform

a real-time 6 DoF SLAM, did overcome these drawbacks by adgat non parametric
approach to the initialization of the feature depth; thesodimited the scene to a max-
imum feature depth of about 5m. In their work the depth of asepbed feature is first
estimated using a particle filter, then the feature, oncdidsibution is close to normal,
is used in a EKF-based SLAM filter. Unfortunately, this deldyise can cause a loss of
information; in fact having the landmark in the map, everhwitt knowing its distance,
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allows immediate use of pure bearing information. To avbig tlelay and to exploit low-
parallax features, Sola et al.[7] presented another noanpetric method that maintain
several depth hypotheses combined with a Gaussian Sum teil®ver the distribution
along the whole ray to the feature, but this increases thebeuwf hypothesis that need
to be removed from the filter at some point.

An alternative solution to overcome both delayed featuitgalization and multiple
depth uncertainty hypothesis was introduced by Montiel.§6§ they showed how the
use of an inverse depth parametrization makes the obsemratidel nearly linear (at least
for small camera displacements), and reduces at the saraenimGaussianity of depth
measurement. In this way, it is possible to model parametersrtainty as Gaussian and
use them in the EKF filter, without delay and reduced linediin. Another solution was
proposed by Eade and Drummond [5], mapping image pointsygir calibrated camera
model, to yield points in the image plane, w.r.t. the curfgede. They introduce a lin-
earization, i.e., the ratio withh and do not take into account the projection uncertainties,
which heavily affect the feature uncertainty. Lastly, th&lution is dependent on the
specific GraphSLAM approach, and on the usage of the Infoomé&irm.

In this paper we present a monocular EKF SLAM filter based oov@lparametriza-
tion, i.e., Inverse Scaling, alternative to the Unified IrseeDepth, that allows undelayed
use of features as well and provides a better representztitie uncertainty in features
depth estimate for both low and high parallax features. Moee Inverse Scaling re-
quires less parameters to represent a feature and provithesmsurement model more
linear w.r.t. Unified Inverse Depth, improving the EKF effgeness.

The next section introduces the Inverse Scaling paranagitiiz, starting from the
description of the Unified Inverse Depth. In the followingsen the implementation of
monocular EKF SLAM with Inverse Scaling parametrizatioprissented. In Section 4 we
validate our proposal on simulated data comparing thetsewith the solution presented
in [6] and on real data, to verify the full 6 DoF implementatiof the system in a real
setup.

2 Thelnverse Scaling Parametrization

As proposed by Montiel et al. [6], it is possible to improve therformance of a monoc-
ular EKF SLAM adopting an inverse depth parametrization m allowing not only
an undelayed initialization of features, but also a noediity reduction of the observa-
tion model. The latter result can be confirmed by analyzimgglitearity of a simplified
measurement equation, as showed in [2].

In the Unified Inverse Depth parametrization a 3D scene ppiatdefined by a vector:

yi = (Ciy.Gi,,Ci,, 91,01, 0) ", 1)
which represents a 3D point located at:
Giy 1
G, | +=m(5,¢) 2)
G, ) P

where(Gi,,Ci,,Ci,) is the camera position, i.e., the position of its projectienter, when
the 3D point was first observe®; and¢; are respectively the azimuth and the elevation



(in the absolute reference frame) for the line

m(9i,¢i) = (cos(¢i)sin(;), —sin(¢i),cos(¢i)cos(J;)) " (3)

andp; = 1/d; is the inverse of the point depth along the line (see [6] foremdetails).
Using this representation for each featuyre/e obtain the following measurement equa-
tion:

Ci

=M (RY[ [ & |+Zmen-r%]) | 4)
G, ) P

whereM is the calibrated intrinsic projection matriR\é’ is the rotation matrix of the
current camera positio@ w.r.t. world frame anay; is the traslation vector of the world
frame w.r.t. current camera positi@ This representation requires the storage of six
parameters in the state vector for each map feature. As detinaterd in [2], this implies a
noticeable computing overhead when compared with the atdritiree Euclidean param-
eters encoding of a 3D point. Moreover, as demonstrated g Bad Drummond [5],
this parametrization does not linearize the model enoughadmays implies an under-
estimation of the uncertainty causing inconsistenciedefitter that lead pose and map
estimation to an irreversible failure.

These considerations motivate the use of the Inverse $cRlmametrization, that
allows to reduce further on the non-linearity of the measeet equation and the number
of parameters. The key idea is to represent 3D point in theesasing homogenous
coordinates:

X 1 (%
Y l=—=( V¥ |- (5)
Z @\ z

in this way we can reduce the number of parameters from sipuo While preserving
a proper modeling of depth uncertainty trhough the invecsgdesparametes that can
we assume normally distributed. Considering this new pration we can define a
different measurement equations:

%
1 |

h=M | RY PRI -S|, (6)
Z

This parametrization allows also to remove théd;, ¢;) term, reducing further on the
non-linearity of the equation. An analytical linearity s, in comparison with Unified
Inverse Depth, is not in the scope of this paper.

3 EKF with Inverse Scaling Parametrization

The parametrization proposed in the previous section haa balidated as part of a
SLAM system that uses an Extended Kalman Filter to jointlyresent the map of the
world and the robot pose. In this paper, we consider the camese represented by six
degrees of freedom, and a sensor providing 2D data.

In this implementation we use the robocentric approachHerstate of the filter. As
presented in [1], this method allows to further reduce tlodmsistency of the EKF ap-
proach (due to linearization) using a robot centered remtasion of the environment.



Moreover, in our case, it allows to semplify the initialiwat of new features as we can
see in the following.
State representation in a EKF-based SLAM system using thecemtric approach is:

R

R R R R 1T
x=[xg VO X§ o XB, - XRy | )

beingx§ = [@,y,0,x,Y, z]T the six degrees of freedom representation of the world/base
reference frame, useful to recover the absolute m&ps [vq,,vy,ve,vx,vy,vz]T is the
camera velocity w.r.t the robot pose, axﬁ;l =[xV, oo]T is the feature Inverse Scaling
Parametrization w.r.t. the camera position.

A constant linear and angular velocity is assumed and tluduywres, at each step, a
roto-traslatiorx~< between the previous camera reference sysi&m | and the actual
pose R«). Moreover, at each step we assume an additive white andzeao Gaussian
error due to an unknown acceleration facavith covariance.

vRer = JRe1pa.at, (8)
xRt = WRelat (9)

The state is updatedin three stepiediction, update, andcomposition. As proposed in [1]
the composition between camera location at tkrnel, and the camera movement at time
k, is postponed to after the update step. This improves theomestimation by using
information about the observed features. For this reaserstéite, after the prediction
step will be:

X1 = [ X1 a}T (10)
Pek-1 = {P‘bl g} (12)

where the acceleration factor is simply concatenated tattte at timek — 1.
The measurement equation of this filter is derived from ouaipetrization.

A Il Y P ys , (12)
A Z%-1

whereM is the calibrated projection matrix of the camera, &nitis covariance:

szcx 0 0 0
fexk O ooy 0 sz 0 0
M=| 0 fc co |, D= 0 o o2 e
CCx

0 0 1
0 0 0 o

(13)

kaf is the roto-traslation matrix between pdsand posé — 1; hR« is the projection of
the 3D point in the camera frame, i.e., the pixel coordinates

Re
e

I

hk_[hkv}_ B | (14)
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We can now extend the state covariance matrix Vitho take the uncertainty of the
projection matrix into consideration as well.

Py 0 O
Pgk-1=| 0 Q 0|, (15)
0 0 D

The classical EKF update equations give the new estimatetbfthe state vectos and
the camera motion from poge- 1 tok.

S=HyPyy_1Hp + R
K =Py_1HgS™
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Pk = Pik—1 — KSKT (16)

Xk = Xik—1+ K (zi —hy)

whereRy is the measurement error covariangehe observation and:
ohy
szaxkilz[0...HVKO...H,:iO...HaHM], (17)
oh oh oh oh
whereH,, = dVRkﬁl,HH = axs_klil’Ha: S Hu = S5k

The last step, after predi(I:tion and update, is compositios step allows to apply the

improved roto-traslatiow%*1 obtained by the step above to the whole state vector

@ngl ® ng—l
VR
Re-1 Re-1
OXR, ~OXg,

Xk = ; (18)

Rk—l. Re-1
OXR, ~ DXk,

where: vR1 = yRe1 4 akAt,xEkk*1 = VR-1At, VR« = vRe1: & is the inverse composition
operator andb is the transformation composition operator. The corredpancovariance
is:

Pk = JPiid ", (19)
being
J:[JX v ... Jg, Jak] (20)
and
OXy OXy OXy OXy

J

=X J,= Jr, = =—=. 21
ot oVt ™ axReTT™ T oa @)

As we have introduced previously, the initialization of awfeatures is very sim-
ple since the filter is robocentric and the Inverse Scalingsisd: a new feature initial-
ization, being centered in the camera reference frame wayal made from position
[0,0,0,0,0,0]. With Inverse Scaling, we can initialize the features withume uncer-
tainty in the depth, as with Unified Inverse Deph, since itrespnts the direction of the
interpretation ray. Moreover all information are desctiliyy Gaussian uncertainty over
the parameters in Inverse Scaling as with Unified Inverselep



Each feature is defined as:

T

Xinit = ( X, ¥,Z,w ) (22)

when we obtain an observatibr= (u,v)" of a new features from the camera, we initialize
its parameters as:

X U — CCx
y | [ v—cgy

z | fc (23)
W A)

being fc the focal length of the camera (we suppose unit aspect ratie) the 2D image
point and|ccy, ccy| the projection center of the camera. The initial valuecotan be
defined to cover the entire working range at bootstrap; foev tincertainty to cover (with
96% probability) the range between some minimum distanicg to infinite, w needs
to be in the 4% confidence intervil, 1/ming]. In our experiments, we used initiél =
fc/(2xming) andoy, = fc/(4xming).

The new state covariance, after the initialization, is ot#d using the image mea-
surement error covariané¥,, the state vector covariangy, and the projection matrix
covarianceD (to keep in consideration the uncertainty on the cameranpetexs). It
becomes:

Xk = [ o } (24)

Pk O 0 0O

init _ 0 Re 0 O

P&=91 0 o a2 o’ (25)

0O 0 O D

with:
I 0

J= l 0 | oxNit Ixit oxnit ‘| . (26)

dh Jw oM

4 Experimental Results

In this section we present the capabilities of our systemgugisimulator for a monocular
vision system, and some real video sequences. In the sinutfiven a point in the

map, and the position of the camera w.r.t. the map, we simtihet image formation on
the device, as well as the uncertainty of the measuremeitts.miotivation for using a
simulated environment to test the proposed model is to hewesa to the ground truth
and therefore to compare different methods using the satae Mareover, in simulation

we can easily use a Monte Carlo approach to produce a propeysentation of the true
uncertainty through exact particle triangulation. The wdated world is planar with a
1D camera, this totally suffice to prove the paper claims,lavtiie real data use the
robocentric 6 DoF implementation presented in the previeasiort.

Iparameters used for the simulated monocular system argeinesolution of 640 pixels at 30Hz and an
uncertainty associated to the image measurements setQdb pixels. We consider the projection matrices
known altogether with their uncertainty, assumed nornuaiaflength of 650 pixels with an uncertainty @£3
pixels and projection center of 320 pixel with=2 pixels. For triangulation we used a camera displacenmfent o
0.6m and an uncertainty associated to the image measures®tribo=0.3 pixels.
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Figure 1: Estimation of 2D point at 15m away from the obsergexd) true distribution
(computed with particle transformation), (blue) Inversalég parametrization, (brown)
classical parametrization (Gaussian distribution). ¥heordinate is depicted on the left,
they on the right.

— GroundTrth
Inverse Scaling |
—— Inverse Depth

— GroundTruth
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Figure 2: Estimation of 2D point at 2.5m away from the obsergred) true distribution,
(brown) Inverse Depth parametrization, (blue) InverseliBggparametrization. Th&
coordinate is depicted on the left, then the right.

In Figure 1 it is possible to compare the triangulation ressing our model with
the classical approach, i.e., Jacobian uncertainty patjgagand the Cartesia,y,z"
point representation. The plots show the reconstructiansifene point at 15m from the
observer. We can see the non-normality of the real distahut comparison with the
classical Gaussian representation, and we confirm the lkigtabution approximation of
the inverse scaling model with respect to classical uncgytpropagation. In Figure 2 we
compare the uncertainty distribution generated usingrie/&caling versus the Inverse
Depth [6] approach when we try to estimate the 2D point at Zi%m with a large parallax
angle). The plots show that the distribution estimated bynoedel is realistic in this case
as well and that it is more realistic with respect to the Udifieverse Depth.

To verify if a better uncertainty modeling can lead to be8&AM results, we tested
two SLAM systems in the same simulated environment wheretgeatures are equally
distributed in the environment; the former implements whgiroposed in Section 3, the
latter uses the Unified Inverse Depth parametrization. Basaciation have been per-
formed manually so that estimates are comparable and the aspects benchmarked



Figure 3: Map reconstruction using Unified Inverse DepthaReatrization (on the left)
and Inverse Scaling Parametrization (on the right). Ndtie¢to obtain a consistent map,
in the Unified Inverse approach, we considered the absotlte wf the inverse depth.

are uncertainty modeling and linearity of the measuremerdah After a simple tra-
jectory (see Figure 3) the uncertainty underestimation nified Inverse Scaling gives
an inconsistent result; in Figure 4, we have the plot of tmererin pose estimation dur-
ing the robot path, respectively far y and 8. As it can be noticed the variance of the
robot pose estimate (the blue lines placedt &) is underestimated for the Inverse Depth
parametrization leading to inconsistency while this isthetcase for the Inverse Scaling
Parametrization.

Now, we present a real application of our system in an outdoatext. In Figure 5
there are some frames taken using a 640x480 BW camera at 30 handheld camera
was moved following a semi-circumference trajectory. Tigeife shows the map esti-
mated using the monocular: the camera trajectory is reptedén red while the features
uncertainty in blue. Overlapped to the map we have shownsalsee images acquired by
the camera with the predicted features position (in redjr tncertainty ellipses and the
features matched (in blue).

5 Conclusions and Future Works

In this paper we introduce a new parametrization for moredxcBLAM based on EKF
filter. Compared with the Inverse Depth solution [6], our Eqgeh improves the accuracy
of the uncertainty modeling, simplifies the measuremengagon and reduces its non-
linearity. We demonstrate this statement experimenta#ling both a simulated frame-
work to allow comparison with ground truth and a real setup.

We have developed a monocular SLAM system to show the cajiebibf this new
parametrization. Adopting the Robocentric approach [1neable to localize the cam-
era and map the environment, reducing the underestimatiomertainty and making the
filter more robust to inconsistency. This approach will beeagled using the hierarchical
SLAM to map large environment and the joint compatibilitgtteo further reduce errors
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Figure 4: Error in robot localizatiorxfy,0): (left) using Inverse Depth Parametrization,
(right) usign Inverse Scaling Parametrization. In red therew.r.t. the ground truth, in
blue+30

Figure 5: Map reconstruction using Inverse Scaling Paranagion in a real outdoor
environment



in data association (see [3] for an example).
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