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Abstract

The recent literature has shown that it is possible to solve the monocular
Simultaneous Localization And Mapping using both undelayed features ini-
tialization and an Extedend Kalman Filter. The key concept,to achieve this
result, was the introduction of a new parametrization called Unified Inverse
Depth that produces measurements equations with a high degree of linear-
ity and allows an efficient and accurate modeling of uncertainties. In this
paper we present a monocular EKF SLAM filter based on an alternative
parametrization, i.e., the Inverse Scaling Parametrization, characterized by a
reduced number of parameters, a more linear measurement model, and a bet-
ter modeling of features uncertainty for both low and high parallax features.
Experiments in simulation demonstrate that the use of the Inverse Scaling
solution improves the monocular EKF SLAM filter when compared with the
Unified Inverse Depth approach, while experiments on real data show the
system working as well.

1 Introduction

Recent works in Simultaneous Localization And Mapping (SLAM) have presented inter-
esting results using a monocular camera; a simple and low power sensor that allows to
estimate the bearing of interest points extracted from an image and, by means of camera
motion and triangulation, the whole 3D structure of the environment [4]. Several issues
affect this approach to SLAM and among them a preminent one isrepresented by the
initialization and uncertainty modeling of the 3D elementsin the map since, from a single
frame, we can not estimate their real depth. Moreover, the data are affected by uncertain-
ties that strongly depend on the observer-to-feature distance and this should be taken into
account when modeling feature uncertainty too.

In their first work, Davison et al. [4], by using an extended Kalman filter to perform
a real-time 6 DoF SLAM, did overcome these drawbacks by adopting a non parametric
approach to the initialization of the feature depth; they also limited the scene to a max-
imum feature depth of about 5m. In their work the depth of an observed feature is first
estimated using a particle filter, then the feature, once itsdistribution is close to normal,
is used in a EKF-based SLAM filter. Unfortunately, this delayed use can cause a loss of
information; in fact having the landmark in the map, even without knowing its distance,
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allows immediate use of pure bearing information. To avoid this delay and to exploit low-
parallax features, Solà et al.[7] presented another non parametric method that maintain
several depth hypotheses combined with a Gaussian Sum Filter to cover the distribution
along the whole ray to the feature, but this increases the number of hypothesis that need
to be removed from the filter at some point.

An alternative solution to overcome both delayed feature initialization and multiple
depth uncertainty hypothesis was introduced by Montiel et al. [6]; they showed how the
use of an inverse depth parametrization makes the observation model nearly linear (at least
for small camera displacements), and reduces at the same time non-Gaussianity of depth
measurement. In this way, it is possible to model parametersuncertainty as Gaussian and
use them in the EKF filter, without delay and reduced linearization. Another solution was
proposed by Eade and Drummond [5], mapping image points, through calibrated camera
model, to yield points in the image plane, w.r.t. the currentpose. They introduce a lin-
earization, i.e., the ratio withz, and do not take into account the projection uncertainties,
which heavily affect the feature uncertainty. Lastly, their solution is dependent on the
specific GraphSLAM approach, and on the usage of the Information form.

In this paper we present a monocular EKF SLAM filter based on a novel parametriza-
tion, i.e., Inverse Scaling, alternative to the Unified Inverse Depth, that allows undelayed
use of features as well and provides a better representationof the uncertainty in features
depth estimate for both low and high parallax features. Moreover, Inverse Scaling re-
quires less parameters to represent a feature and provides ameasurement model more
linear w.r.t. Unified Inverse Depth, improving the EKF effectiveness.

The next section introduces the Inverse Scaling parametrization, starting from the
description of the Unified Inverse Depth. In the following section the implementation of
monocular EKF SLAM with Inverse Scaling parametrization ispresented. In Section 4 we
validate our proposal on simulated data comparing the results with the solution presented
in [6] and on real data, to verify the full 6 DoF implementation of the system in a real
setup.

2 The Inverse Scaling Parametrization

As proposed by Montiel et al. [6], it is possible to improve the performance of a monoc-
ular EKF SLAM adopting an inverse depth parametrization andthus allowing not only
an undelayed initialization of features, but also a non-linearity reduction of the observa-
tion model. The latter result can be confirmed by analyzing the linearity of a simplified
measurement equation, as showed in [2].

In the Unified Inverse Depth parametrization a 3D scene pointyi is defined by a vector:

yi = (Cix ,Ciy ,Ciz ,ϑi,ϕi,ρi)
T , (1)

which represents a 3D point located at:




Cix
Ciy
Ciz



+
1
ρi

m(ϑi,ϕi) (2)

where(Cix ,Ciy ,Ciz) is the camera position, i.e., the position of its projectioncenter, when
the 3D point was first observed;ϑi andϕi are respectively the azimuth and the elevation



(in the absolute reference frame) for the line

m(ϑi,ϕi) = (cos(ϕi)sin(ϑi),−sin(ϕi),cos(ϕi)cos(ϑi))
T (3)

andρi = 1/di is the inverse of the point depth along the line (see [6] for more details).
Using this representation for each featurei, we obtain the following measurement equa-
tion:

hi = M



RW
C









Cix
Ciy
Ciz



+
1
ρi

m(ϑi,ϕi)− rC
W







 , (4)

whereM is the calibrated intrinsic projection matrix:RW
C is the rotation matrix of the

current camera positionC w.r.t. world frame andrC
W is the traslation vector of the world

frame w.r.t. current camera positionC. This representation requires the storage of six
parameters in the state vector for each map feature. As demonstrated in [2], this implies a
noticeable computing overhead when compared with the standard three Euclidean param-
eters encoding of a 3D point. Moreover, as demonstrated by Eade and Drummond [5],
this parametrization does not linearize the model enough and always implies an under-
estimation of the uncertainty causing inconsistencies of the filter that lead pose and map
estimation to an irreversible failure.

These considerations motivate the use of the Inverse Scaling Parametrization, that
allows to reduce further on the non-linearity of the measurement equation and the number
of parameters. The key idea is to represent 3D point in the scene using homogenous
coordinates:





Xi

Yi

Zi



 =
1
ωi





xi

yi

zi



 . (5)

in this way we can reduce the number of parameters from six to four while preserving
a proper modeling of depth uncertainty trhough the inverse scale parameterω that can
we assume normally distributed. Considering this new representation we can define a
different measurement equations:

hi = M



RW
C





1
ωi





xi

yi

zi



− rC
W







 . (6)

This parametrization allows also to remove them(ϑi,ϕi) term, reducing further on the
non-linearity of the equation. An analytical linearity analysis, in comparison with Unified
Inverse Depth, is not in the scope of this paper.

3 EKF with Inverse Scaling Parametrization

The parametrization proposed in the previous section has been validated as part of a
SLAM system that uses an Extended Kalman Filter to jointly represent the map of the
world and the robot pose. In this paper, we consider the camera pose represented by six
degrees of freedom, and a sensor providing 2D data.

In this implementation we use the robocentric approach for the state of the filter. As
presented in [1], this method allows to further reduce the inconsistency of the EKF ap-
proach (due to linearization) using a robot centered representation of the environment.



Moreover, in our case, it allows to semplify the initialization of new features as we can
see in the following.

State representation in a EKF-based SLAM system using the robocentric approach is:

x =
[

xR
B vR xR

F1
. . . xR

Fm
. . . xR

FM

]T
(7)

beingxR
B = [φ ,γ,θ ,x,y,z]T the six degrees of freedom representation of the world/base

reference frame, useful to recover the absolute map,vR =
[

vφ ,vγ ,vθ ,vx,vy,vz
]T

is the
camera velocity w.r.t the robot pose, andxR

Fm
= [x,y,z,ω ]T is the feature Inverse Scaling

Parametrization w.r.t. the camera position.
A constant linear and angular velocity is assumed and this produces, at each step, a

roto-traslationxRk−1
Rk

between the previous camera reference system (Rk−1) and the actual
pose (Rk). Moreover, at each step we assume an additive white and zeromean Gaussian
error due to an unknown acceleration factora with covarianceQ.

vRk−1 = v̂Rk−1 + a ·∆t, (8)

xRk−1
Rk

= v̂Rk−1 ·∆t. (9)

The state is updatedin three steps:prediction, update, andcomposition. As proposed in [1]
the composition between camera location at timek−1, and the camera movement at time
k, is postponed to after the update step. This improves the motion estimation by using
information about the observed features. For this reason the state, after the prediction
step will be:

xk|k−1 =
[

xk−1 a
]T (10)

Pk|k−1 =

[

Pk−1 0
0 Q

]

(11)

where the acceleration factor is simply concatenated to thestate at timek−1.
The measurement equation of this filter is derived from our parametrization.

hRk =







hRk
x

hRk
y

hRk
z






= M






xRk

Rk−1







1
ω







x
Rk−1
Fi

y
Rk−1
Fi

z
Rk−1
Fi


















, (12)

whereM is the calibrated projection matrix of the camera, andD its covariance:

M =





f cx 0 ccx

0 f cy ccy

0 0 1



 , D =









σ2
f cx

0 0 0
0 σ2

f cy
0 0

0 0 σ2
ccx

0
0 0 0 σ2

ccy









, (13)

xRk
Rk−1

is the roto-traslation matrix between posek and posek−1; hRk is the projection of
the 3D point in the camera frame, i.e., the pixel coordinates:

hk =

[

hku

hkv

]

=







h
Rk
x

h
Rk
z

h
Rk
y

h
Rk
z






. (14)



We can now extend the state covariance matrix withD to take the uncertainty of the
projection matrix into consideration as well.

Pk|k−1 =





Pk−1 0 0
0 Q 0
0 0 D



 , (15)

The classical EKF update equations give the new estimate of both the state vectorxk|k and
the camera motion from posek−1 to k.

S = HkPk|k−1HT
k + Rk

K = Pk|k−1HT
k S−1

Pk|k = Pk|k−1−KSKT

xk|k = xk|k−1 + K(zi −hk)

(16)

whereRk is the measurement error covariance,zi the observation andHk:

Hk =
∂hk

∂xk−1
=

[

0 . . . Hvk 0 . . . HFi 0 . . . Ha HM
]

, (17)

whereHvk = ∂hk

∂vRk−1
,HFi = ∂hk

∂x
Rk−1
Fi

,Ha = ∂hk
∂a ,HM = ∂hk

∂M .

The last step, after prediction and update, is composition;this step allows to apply the
improved roto-traslationxRk−1

Rk
obtained by the step above to the whole state vector

xk|k =

















⊖xRk−1
Rk

⊕xRk−1
B

vRk

⊖xRk−1
Rk

⊕xRk−1
F1

...

⊖xRk−1
Rk

⊕xRk−1
Fm

















, (18)

where:vRk−1 = vRk−1 + ak∆t,xRk−1
Rk

= vRk−1∆t,vRk = vRk−1; ⊖ is the inverse composition
operator and⊕ is the transformation composition operator. The corresponding covariance
is:

Pk|k = JPk|kJT , (19)

being
J =

[

Jx Jv . . . JFm Jak

]

(20)

and

Jx =
∂xk

∂xRk−1
B

,Jv =
∂xk

∂vRk−1
Rk

,JFm =
∂xk

∂xRk−1
Fm

,Jak =
∂xk

∂ak
. (21)

As we have introduced previously, the initialization of a new features is very sim-
ple since the filter is robocentric and the Inverse Scaling isused: a new feature initial-
ization, being centered in the camera reference frame, is always made from position
[0,0,0,0,0,0]. With Inverse Scaling, we can initialize the features with ahuge uncer-
tainty in the depth, as with Unified Inverse Deph, since it represents the direction of the
interpretation ray. Moreover all information are described by Gaussian uncertainty over
the parameters in Inverse Scaling as with Unified Inverse Depth.



Each feature is defined as:

xinit =
(

x,y,z,ω
)T

(22)

when we obtain an observationh = (u,v)T of a new features from the camera, we initialize
its parameters as:









x
y
z
ω









=









u− ccx

v− ccy

f c
ω̂









(23)

being f c the focal length of the camera (we suppose unit aspect ratio), [u,v] the 2D image
point and[ccx,ccy] the projection center of the camera. The initial value ofω̂ can be
defined to cover the entire working range at bootstrap; for 1/ω uncertainty to cover (with
96% probability) the range between some minimum distancemind to infinite, ω needs
to be in the 4% confidence interval[0,1/mind]. In our experiments, we used initialω̂ =
f c/(2∗mind) andσω = f c/(4∗mind).

The new state covariance, after the initialization, is obtained using the image mea-
surement error covarianceRk, the state vector covariancePk|k, and the projection matrix
covarianceD (to keep in consideration the uncertainty on the camera parameters). It
becomes:

xinit
k|k =

[

xk|k

xinit

]

(24)

Pinit
k|k = J









Pk|k 0 0 0
0 Rk 0 0
0 0 σω

2 0
0 0 0 D









JT (25)

with:

J =

[

I 0

0 ∂xinit

∂h
∂xinit

∂ω
∂xinit

∂M

]

. (26)

4 Experimental Results

In this section we present the capabilities of our system using a simulator for a monocular
vision system, and some real video sequences. In the simulator, given a point in the
map, and the position of the camera w.r.t. the map, we simulate the image formation on
the device, as well as the uncertainty of the measurements. The motivation for using a
simulated environment to test the proposed model is to have access to the ground truth
and therefore to compare different methods using the same data. Moreover, in simulation
we can easily use a Monte Carlo approach to produce a proper representation of the true
uncertainty through exact particle triangulation. The simulated world is planar with a
1D camera, this totally suffice to prove the paper claims, while the real data use the
robocentric 6 DoF implementation presented in the previoussection1.

1Parameters used for the simulated monocular system are: image resolution of 640 pixels at 30Hz and an
uncertainty associated to the image measurements set toσ=0.5 pixels. We consider the projection matrices
known altogether with their uncertainty, assumed normal; focal length of 650 pixels with an uncertainty ofσ=3
pixels and projection center of 320 pixel withσ=2 pixels. For triangulation we used a camera displacement of
0.6m and an uncertainty associated to the image measurements set toσ=0.3 pixels.



Figure 1: Estimation of 2D point at 15m away from the observer: (red) true distribution
(computed with particle transformation), (blue) Inverse Scaling parametrization, (brown)
classical parametrization (Gaussian distribution). Thex coordinate is depicted on the left,
they on the right.

Figure 2: Estimation of 2D point at 2.5m away from the observer: (red) true distribution,
(brown) Inverse Depth parametrization, (blue) Inverse Scaling parametrization. Thex
coordinate is depicted on the left, they on the right.

In Figure 1 it is possible to compare the triangulation result using our model with
the classical approach, i.e., Jacobian uncertainty propagation and the Cartesian[x,y,z]T

point representation. The plots show the reconstruction ofa scene point at 15m from the
observer. We can see the non-normality of the real distribution in comparison with the
classical Gaussian representation, and we confirm the better distribution approximation of
the inverse scaling model with respect to classical uncertainty propagation. In Figure 2 we
compare the uncertainty distribution generated using Inverse Scaling versus the Inverse
Depth [6] approach when we try to estimate the 2D point at 2.5m(i.e., with a large parallax
angle). The plots show that the distribution estimated by our model is realistic in this case
as well and that it is more realistic with respect to the Unified Inverse Depth.

To verify if a better uncertainty modeling can lead to betterSLAM results, we tested
two SLAM systems in the same simulated environment where point features are equally
distributed in the environment; the former implements whatis proposed in Section 3, the
latter uses the Unified Inverse Depth parametrization. Dataassociation have been per-
formed manually so that estimates are comparable and the main aspects benchmarked
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Figure 3: Map reconstruction using Unified Inverse Depth Parametrization (on the left)
and Inverse Scaling Parametrization (on the right). Noticethat to obtain a consistent map,
in the Unified Inverse approach, we considered the absolute value of the inverse depth.

are uncertainty modeling and linearity of the measurement model. After a simple tra-
jectory (see Figure 3) the uncertainty underestimation of Unified Inverse Scaling gives
an inconsistent result; in Figure 4, we have the plot of the errors in pose estimation dur-
ing the robot path, respectively forx, y andθ . As it can be noticed the variance of the
robot pose estimate (the blue lines placed at±3σ ) is underestimated for the Inverse Depth
parametrization leading to inconsistency while this is notthe case for the Inverse Scaling
Parametrization.

Now, we present a real application of our system in an outdoorcontext. In Figure 5
there are some frames taken using a 640x480 BW camera at 30Hz.The handheld camera
was moved following a semi-circumference trajectory. The figure shows the map esti-
mated using the monocular: the camera trajectory is represented in red while the features
uncertainty in blue. Overlapped to the map we have shown alsosome images acquired by
the camera with the predicted features position (in red), their uncertainty ellipses and the
features matched (in blue).

5 Conclusions and Future Works

In this paper we introduce a new parametrization for monocular SLAM based on EKF
filter. Compared with the Inverse Depth solution [6], our approach improves the accuracy
of the uncertainty modeling, simplifies the measurement equation and reduces its non-
linearity. We demonstrate this statement experimentally,using both a simulated frame-
work to allow comparison with ground truth and a real setup.

We have developed a monocular SLAM system to show the capabilities of this new
parametrization. Adopting the Robocentric approach [1] weare able to localize the cam-
era and map the environment, reducing the underestimation of uncertainty and making the
filter more robust to inconsistency. This approach will be extended using the hierarchical
SLAM to map large environment and the joint compatibility test to further reduce errors



Figure 4: Error in robot localization (x,y,θ ): (left) using Inverse Depth Parametrization,
(right) usign Inverse Scaling Parametrization. In red the error w.r.t. the ground truth, in
blue±3σ

! "! #!! #"! $!! $"! %!!

!

"!

#!!

#"!

$!!

!

! "! #!! #"! $!! $"! %!!

!

"!

#!!

#"!

$!!

! "! #!! #"! $!! $"! %!!

!

"!

#!!

#"!

$!!

"

Figure 5: Map reconstruction using Inverse Scaling Parametrization in a real outdoor
environment



in data association (see [3] for an example).
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