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Abstract

We consider multi-target tracking via probabilistic data association among
tracklets (trajectory fragments), a mid-level representation that provides good
spatio-temporal context for efficient tracking. Model parameter estimation
and the search for the best association among tracklets are unified naturally
within a Markov Chain Monte Carlo sampling procedure. The proposed ap-
proach is able to infer the optimal model parameters for different tracking
scenarios in an unsupervised manner.

1 Introduction

Long studied in the radar and remote sensing world, multi-target tracking has been draw-
ing increasing attention in the visual tracking community due to the prevalence of video
cameras mounted in public places. The enormous quantity of video demands intelligent
algorithms that can adapt to different input sequences. Most existing tracking algorithms
require parameter tuning for different scenes. Although methods for automatic parameter
estimation exist, they typically require labeled training sequences.

Another challenge in multi-target tracking is the presence of an unknown and ever-
changing number of targets. We adopt Markov Chain Monte Carlo Data Association
(MCMCDA) to estimate a varying number of trajectories given a set of tracklets extracted
from the video sequence. Tracklets are mid-level features that provide more spatial and
temporal context than raw sensor detections, while being less demanding to produce than
persistent object trajectories. Each tracklet is a partial trajectory extracted by a tracker
within a short time period and therefore less prone to drift and occlusion than a long
trajectory. The final output of our data association algorithm is a partition of the set of
tracklets such that the tracklets belonging to each individual object have been grouped
together (see Figure 1).

To summarize, we propose to recover the trajectories of moving foreground objects
from a set of short-term tracklets using MCMCDA and to automatically infer the optimal
model parameters from unlabeled data. We show that by adopting the Bayesian paradigm,
inference of both the optimal parameters and the tracklet partition can be naturally unified.
Experimental results also demonstrate the advantage of working at the level of tracklets
when objects are closely spaced or occlude each other.
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Figure 1: Illustration of multi-target data association by tracklets. Left: unordered col-
lection of raw tracklets extracted from overlapping temporal windows. Right: partition of
tracklets into sets associated with individual objects, each drawn in a different color.

1.1 Related work

Multi-target data association is traditionally addressed using the classic multiple hypoth-
esis tracker (MHT) [7] or joint probabilistic data association filter (JPDAF) [1]. MHT
maintains, at least in principle, a complete hypothesis tree of feasible data association
assignments between object tracks and incoming observations. The full method is com-
putationally infeasible unless combined with (suboptimal) pruning heuristics. JPDAF is
a sequential method that updates each known trajectory by a weighted sum of compatible
observations in each new frame [9]. As the number of observation grows, the complexity
of both methods becomes unmanageable in practice. Recursive Bayesian methods such
as the mean-shift or particle filter trackers make a first-order Markovian assumption that
the current state of a target only depends on the previous time frame. Many of these basic
methods also assume they are tracking a single object in isolation, and the obvious exten-
sion to tracking multiple single objects separately runs into problems when the objects are
closely spaced or interacting. To model the interaction among targets, various graphical
models have been developed. Yang et al. combine individual mean shift trackers in a
star-graph and use belief propagation to infer the optimal joint probability [10]. A pair-
wise Markov random field has been adopted to prevent nearby trackers from claiming the
same set of image pixels in [8, 12]. Methods based on MCMC sampling have a computa-
tional advantage and can be extended to handle a varying number of targets [8, 12, 13].
However, being limited by the the underlying Markovian assumption, it is hard to achieve
optimal tracking results in the long run. To relax this assumption, researchers have been
working on approaches that use longer-range temporal information [3].

More recently, MCMCDA has been adopted for multi-target tracking [5, 6, 11]. This
approach has the advantage of searching for the globally optimal solution while still being
computationally manageable, and provides a principled way to incorporate prior knowl-
edge. Automatic parameter estimation is proposed in [5] as a linear programming prob-
lem, but labeled sequences are required. Our paper is inspired by these recent advances
in MCMCDA, however we propose a purely Bayesian approach that infers the model pa-
rameters from unlabeled data by sampling, while simultaneously estimating the optimal
solution for the data association.



2 Multi-target tracking as data association

Denote the set of observations within the time interval [1, T] as Z = {Z, Zi1ar, ..., Z1}
where Z; is the set of observations from an unknown number of targets obtained at time
frame ¢ and At controls the sampling rate. The data association view of multi-target track-
ing aims at finding the optimal partition of the observation set ®* = {1, 71,..., Tk }, such
that 7y is the set of false alarms, 7 is the trajectory of target k, and K is the estimated
number of targets that appear within the entire time interval. We constrain each observa-
tion to be associated with at most one trajectory, and constrain a valid trajectory to have
at least two observations to distinguish between a single observation and a false alarm.

In the Bayesian framework, we take the the maximum a posterior (MAP) estimator of
the posterior distribution as the optimal solution for the partition w, i.e.

o = argmax(p(0]2)) "2 arg max(p(Z|w)p()) ()
(0] 0]

where p(Z|w) is the likelihood function that models how well the partition fits the ob-
servations and p(®) expresses our prior knowledge about desirable properties of good
trajectories. This prior is often parameterized as p(®|A), with A = {A;} being a vector
of model parameters. The values of A are crucial to the algorithm’s performance. In [11],
these parameters are estimated from labeled video sequences by solving a linear system of
equations. However, as the authors pointed out, the ground truth data often generate con-
tradictory equations and thus heuristics have to be used to form a solvable system. One
of our main contributions is to show how to infer A from unlabeled data in a principled
way by a Bayesian hierarchical model with hyperprior p(A|0). The hyperparameters 6
are set to yield non-informative priors because we want our method to adapt to different
tracking scenarios with the minimal amount of human supervision. However, it is easy
to modify the priors to incorporate domain knowledge. Instead of manually setting the
model parameters A, we treat them as unknowns as well, and infer both A and @ as

(@,1%) = argmax(p(®,412)) <= argmax(p(Z|o, M)p(@/L)p(A]6)) @)

To find the solution of Eqn. 2 is extremely challenging due to the combinatorial solution
space of . MCMC sampling has been shown to be a powerful computing approach for
solving such complicated problems [5, 6, 11]. We show how to extend MCMCDA with
inference of the model parameters A in Section 3. The rest of this section will first explain
how we extract the features from the video sequence and use them in our models.

2.1 Feature Extraction and Modeling

We define a set of basic features similar to [11], adapted for use with tracklet observations
as input. We use simple, single-target trackers such as mean-shift or particle filtering to
generate tracklets. Indeed, the strength of our approach is that it does not depend on how
the initial tracklets are produced, since we automatically estimate our parameters from
the data itself. Tracklets are initialized by a foreground object detector that runs on every
10th frame. The object detector fits a rectangular cover to the foreground map generated
by a background subtraction algorithm, in a manner similar to [13]. For each detection,
a tracker is initialized to track the rectangular region for up to d subsequent frames (e.g.



d = 30). Each tracklet is thus a sequence of rectangles that delineates the location and size
of a candidate object, and tracklets for the same object overlap temporally to be resilient
to missed detections in some frames.

~ Let the tracklet for the jth detected object rectangle that is initialized at frame ¢ be
7zl ={(X].S,V;) :i € [0,d]}, where X = (x, y) is the coordinate of the object center,
S = (w, h) is the width and height of the object, and V = (dx, dy) is the velocity vec-
tor normalized w.r.t. object size. To recover the true trajectories of foreground objects
is equivalent to finding a subset of tracklets that belong to each foreground object and
stitching them together in an optimal way. The estimated trajectory for each object, 1, is
represented as {7, , Tr,, - - -, Thig| }, where T, denotes the ith tracklet in the trajectory.

We extract four tracklet-level measures to model the likelihood of belonging to the
same trajectory based on spatial, motion, and appearance consistencies. In this scheme,
a distance function D; defines the similarity of two rectangles at one time instance based
on feature j. This rectangle-level measure is aggregated into a tracklet-level distance
measure fj(Z;,Z>) as follows: if two tracklets Z; and Z, overlap temporally, the distance
measures between rectangles in the overlapping frames are averaged; otherwise, we com-
pute the distance between the ending rectangle of Z; and the starting rectangle of Z, to
allow missing detections and gaps between tracklets. This tracklet-level distance f; is fur-
ther aggregated to a trajectory-level distance M j; based on the pairwise distances between
pairs of successive tracklets in the trajectory. This layered aggregation scheme provides
more accurate and stable measures in a trajectory context than purely frame-wise mea-
sures. We use a general exponential model to define the likelihood function for a single
trajectory T; given the observed tracklet features
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‘We now define the D; distance functions for each feature M;. M;: Color Appearance. We
measure appearance similarity between two tracklets by Earth Mover’s Distance (EMD)
[4]. D; is the EMD distance between color histograms extracted from two rectangular
regions. Mj: Object Size. Rectangles with quite different sizes are unlikely to come
from the same object. Hence, we define D, = ||S| — Sz||/ max(w;,w) as the normalized
difference between object sizes. M3: Spatial Proximity. The spatial proximity among
tracklets within the same trajectory is measured by Euclidean difference of object location
of the two tracklets normalized w.r.t. the object size, i.e., D3 = ||X; — X»||/ max (w1, w).
My: Velocity Coherence. The velocity distance is measured by Dy = ||V} — V5||, as we
do not want to merge two tracklets into one trajectory if they are going in two different
directions, even if they are spatially close to each other and have similar appearance.

Based on Eqn. 3, we are set to define the likelihood function of K estimated trajecto-
ries given observations from the entire sequence Z as
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We also incorporate prior knowledge about desirable properties of trajectories by com-
puting the following features.



Ms: False Alarms. To avoid a trivial configuration of @ where all the tracklets are con-
sidered as false alarms, we define the penalty function:

pr(@) =Ase %M, where Ms = || 6)

Mg: Trajectory Length. Let F(1;) be the set of frames covered by a trajectory T, and let
DF (1) = max(F (1)) —min(F(1;)). We encourage long trajectories by the following
exponential model

K A

K A6
piI(0) = le(fk) = H%e DF(7) = lGKeilﬁMﬁ, Mg = ZDF(T/JiI @)
k=1 k=1 k

My, Mg: Merge Pairs and Spatial Overlap. In practice, we extract tracklets from tem-
porally overlapping windows, and therefore each trajectory is expected to be fragmented
into multiple overlapping tracklets. Candidate merge pairs are two tracklets with a partic-
ular parent/child structure, to be described in the next section. If eventually they are not
merged, we call them dangling merge pairs. To encourage merging overlapping tracklets
rather than starting new trajectories, we penalize large numbers of dangling merge pairs
as well as spatial overlap between different trajectories.

Pe(@) = A7e™2M1 My = |G|, G is the set of dangling merge pairs (8)
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where Mg, is the amount of spatial overlap between object rectangles, aggregated into a
track-level measure in a similar manner as discussed for Eqn.3. With Eqns. 6-9, the prior
probability is defined as follows:

—_y8 M
(@A) = pr(@0)pi(®)pe(®)po(0) = AsAE 10K e Lj=sAiM,j (10)

The last piece of the model is the hyperprior for the model parameters A, since we treat
them as parameters to be estimated by the algorithm along with @. Because we model
both the likelihood function and the prior distribution by exponential distributions, for
computational efficiency we choose the Gamma distribution for all our hyperpriors.
0 gl 00—1 — 2

p(A]0) ~ Gamma(6”,0" )< A7 ~ e ol (11)
where 0° = {Gio :i=1,...,8} is the vector of shape parameters for the Gamma distri-
bution and ' is the vector of scale parameters. The hyperparameters 6 that govern the

Gamma distributions are chosen to yield non-informative priors, assuming we do not have
prior knowledge about the tracking scenario.

3 MCMCDA with unsupervised parameter estimation

Because of the combinatorial solution space of , to find even a good approximate par-
tition of tracklets into trajectories is extremely challenging. We use MCMC sampling
techniques as a stochastic mode seeking procedure, and extend the previous approaches
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Figure 2: Different move types in MCMCDA. The tracklets in the same color belong to
the same trajectory and false alarms are drawn in white.

in [6, 11] with a fully Bayesian treatment that simultaneously estimates the model pa-
rameters A along with the observation partition .
From Eqn. 5, 10, and 11, we can derive the full conditional distributions for @ and A.
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where a1 = (67 + Xy |u| - K), i = (Tal‘ +M,;)~!. Similar derivations show that all
1
p(Aj|—) ~ Gamma(a;, B;). where

a={(6) 4+ |ul—K), (69 +1), (60 +K), (69 +1), (6§ +K)}, B = (% +M)~"(13)
k

We see that by adopting exponential models and conjugate Gamma priors, the full condi-
tional distributions for A are also Gamma distributions, which can be efficiently sampled
using a Gibbs sampler [2].

A similar derivation leads to the full conditional distribution for @

4
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This is not a known distribution, so we resort to the Metropolis Hastings algorithm [2].
By design, a series of reversible proposal moves yields a Markov chain that is irreducible,
aperiodic, and that converges to a stationary distribution by the ergodic theorem [6]. In
our case, the stationary distribution 7(®) is defined in Eqn.14, and the acceptance ratio is
computed as

) 15)

The proposal distributions g(®, @") consists of four pairs of reversible moves, as il-
lustrated in Fig.2. To describe the constructions of the proposals, we first introduce a
neighborhood tree structure of observations similar to [6], designed to make the search
space manageable. Tracklet Z; is the parent of tracklet Z, if their initial frame numbers are
within the maximal allowed missing frames 7},,, and if their spatial distance falls below
a threshold controlled by the maximal speed of the targets. The probability of proposing
each type of move, py,(m), is essentially a uniform distribution, but adapted to the current
configuration of @ for better efficiency. For example, if the number of trajectories K = 0,



Algorithm 1 MCMCDA with parameter estimation
Input: Z, nype, @o, 6 Output: A*, ©*
Initialization: ® « @y, A ~ Gamma(8°,0'), (A*, ®*) = (A, @)
forn =110 ny,,
update ® sample a move m from the distribution p,(m)
propose @' from the move specific proposal p,,(®|A)
sample U ~ Uniform(0,1)
o — o if log(U) < log(A(w,®"))
update A update o, B according to Eqn. 13
sample A ~ Gamma(o, f3)
(A*, 0*) «— (A, ) if p(0,1]|Z) > p(0*,A*|Z)

only the birth move is allowed.
Birth/Death. Every birth move proposes a new trajectory by sampling uniformly at
random (u.a.r.) from the current set of free tracklets 7o in ®. We then extend Ty,
by recursively appending a child tracklet of the current ending tracklet with probabil-
ity y. The child tracklet is chosen based on consistency between the child and par-
ent tracklets as defined in the likelihood function. Hence, we define ext(child) o< (1 —
log(¢(child|parent)))~", with ¢ as given by Eqn. 3. The birth move is rejected if | x| <
2 because we cannot distinguish between a false alarm and a trajectory with only a single
tracklet. For the (reverse) death move, we choose k uv.a.r. from {1,...K} and delete 7;
from ®, adding the tracklets associated with 7; back to the set of false alarms 7.
Extension/Reduction. In an extension move, a trajectory Ty is selected u.a.r. from ® and
extended by the same recursive procedure as in the birth move. In a reduction move, we
pick a tracklet 7; u.a.r. and then select a break point i from {2,...,|7|} according to the
probability by (i) =< —log(¢(1,, |7, )), which is inversely proportional to the consistency
measure, so the trajectory is likely to break at its weakest link. The tracklets after the
break point are added back to the false alarm set. The same operations are performed
backwards in time in a similar manner.
Split/Merge. The split move is similar to a reduction, but instead of freeing up the
chain of tracklets after the break point, it becomes a new trajectory. Specifically, we
war select 7 and select a break point from {2,...,|%| — 1}. To propose a merge
move, we pick a pair of trajectories (7;,7;) u.a.r. from the set of all possible merge pairs
G = {(%,7j) : 7j(t1) € child(7i(t;1,))} and append 7; to the end of 7; (the rectangles in
the temporal overlap between the tracklets are averaged).
Switch. This move is included to help explore the solution space. It is essentially
the same as a series of birth/death and split/merge moves. We select a pair of trajec-
tories (7(tp), 7j(tg)) v.ar. from the set of switchable trajectories {(7;,,7;,) : 7j,,, €
child(t;,) &;,, | € child(t;,)}. The tail sections of the two trajectories after their switch
points are swapped.

To summarize, by introducing the hyperpriors 6 over the model parameters A, our algo-
rithm is able to estimate A and the object trajectories @ in a unified Bayesian framework
so that the tracking method can adapt to different videos automatically. The MAP es-
timation is computed by MCMC sampling, where A can be sampled easily by a simple
Gibbs sampler, thanks to the choice of the conjugate Gamma prior, and @ is sampled
using the Metropolis Hastings algorithm with reversible moves. The complete algorithm



is summarized in Algorithm 1.

4 Experimental Results

We first illustrate our algorithm using a sequence from the EU Caviar Project!. The
supplied ground truth trajectories are broken up to create a set of overlapping tracklets
of length 30 frames, starting at every 10th frame. We obtain the optimal parameter A*
from the ground truth tracklets and show how the estimated trajectories are affected by
perturbing the parameters. In Figure 3(c), we plot the estimated number of trajectories
against Ag, the parameter for the spatial overlap term. Even such a crude measure shows
the importance of setting proper parameter values. If the value of Ag is too small, the
overlapping tracklets do not get merged properly and are instead hypothesized as new
trajectories (Figure 3(a)). The appropriate parameter has to be set to achieve optimal
association (Figure 3(b)). Note that there are also correlations among the model param-
eters that make them difficult to fine tune, and therefore adaptive methods are desired to
determine the optimal parameter values automatically.
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Figure 3: Illustration of multi-target data association by tracklets and the influence of one
model parameter. Left: a “bad” partition of tracklets where more than four trajectories
were estimated because Ag is small. Middle: a “good” partition of tracklets into sets
associated with individual objects, each drawn in a different color. The orange one is the
trajectory of a person not currently visible. Right: The total estimated number of targets
varies while changing even one single model parameter.

We next show the learnt parameters and estimated trajectories for real scenes. The
first test sequence is a challenging multi-target soccer sequence®. Players were automat-
ically detected at every 10th frame via background subtraction and used to seed simple
correlation-based template trackers to generate tracklets. The second sequence is captured
using a Sony camcorder at an outdoor art’s festival. The task becomes more challenging
here due to lower camera elevation angle and higher crowd density, which lead to more
occlusion and more complex trajectory dynamics. We use an edge-based head detector
for detection and color-based particle filter for tracklet generation. Figure 4 shows the
estimated trajectories for each case and the inferred model parameters. The algorithm

Thttp://homepages.inf.ed.ac.uk/rbf/CAVIAR/
Zhttp://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html



is able to use noisy tracklets (Figure 4(a,e)) generated by a variety of simple trackers to
recover reasonable trajectories under challenging situations.

5 Conclusion

In this paper, we use tracklet features for multi-target tracking, which provides greater
spatio-temporal context for data association. By introducing a hierarchical Bayesian
model, we propose a principled method for unsupervised learning of model parameters
and object trajectories. The MAP solution is made computationally tractable by MCMC
sampling techniques. This algorithm could be extended easily to an online version by
using sliding temporal windows.
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