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Abstract

A common approach to the problem of 3D human pose estimation from
video is to recursively estimate the most likely pose via particle filtering.
However, standard particle filtering methods fail the task due to the high
dimensionality of the 3D articulated human pose space.

In this paper we present a thorough evaluation of two variants of particle
filtering, namely Annealed Particle Filtering and Partitioned Sampling, that
have been proposed to make the problem feasible by exploiting the hierarchi-
cal structures inside the pose space. We evaluate both methods in the context
of markerless model-based 3D motion capture using silhouette shapes from
multiple cameras. For that we created a simulation from ground truth se-
quences of human motions, which enables us to focus our evaluation on the
sampling capabilities of the approaches, i.e. on how efficient particles are
spread towards the modes of the distribution. We show the behavior with
respect to the number of cameras used, the number of particles used, as well
as the dimensionality of the search space. Especially the performance when
using more complex human models (~ 40 DOF and above) that are able to
capture human movements with higher precision compared to previous ap-
proaches is of interest in this work.

In summary, we show that both methods have complementary strengths,
and propose a combined method that is able to perform the tracking task with
higher robustness despite reduced computational effort.

Introduction

Human Pose estimation is a highly active research topic in Computer Vision. Among the
possible areas of application are robotics, surveillance scenarios, human computer inter-
action, computer graphics and animation, as well as ergonomic industrial design and mo-
tion analysis in high performance sports. In the context of higher level action recognition,
knowledge about the human motion is often considered a prerequisite for the recognition
and understanding of human actions and intentions. While commercial systems for mo-
tion capture mostly rely on the recognition of easily detectable markers (e.g. infrared),
research is mainly focusing on markerless motion capture systems.

In this paper we investigate different strategies for recursive estimation of human

poses from video sequences in a Bayesian framework, or in other words for searching
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the sequence of optimal poses given an initial estimate. Our work can be classified in the
context of markerless human pose estimation using a 3D articulated human model. As
human motion is non-linear in both its dynamics and the available observation models,
particle filters [8, 2] are a reasonable choice for performing the tracking task. However,
standard particle filtering is unsuitable for pose estimation as the number of particles
needed grows exponentially with the number of dimensions. It is therefore advisable to
exploit the hierarchical structure of the articulated pose space to guide particle spread into
the most relevant areas, i.e. towards the modes of the distribution. Deutscher and Reid
[7] proposed the Annealed Particle Filter (APF) to escape the local minima inherent in
the high dimensional human pose space. Another particle filtering variant known as Par-
titioned Sampling (PS) has been proposed by MacCormick and Isard [11]. Both methods
have been reported to achieve good results when standard particle filtering fails.

We present a detailed experimental evaluation of APF and PS in the context of 3D hu-
man pose estimation, and make the following contributions: e First, we provide a detailed
comparison of APF and PS on a simulation sequence from ground truth data and point
out strengths and weaknesses of both approaches, focusing on their sampling capabilities.
We investigate the influence of the number of cameras used for tracking as well as the
number of particles used. We show performance depending on the dimensionality of the
pose space by distinguishing between upper-body and full-body motions. e Second, we
propose an improved weighting function for silhouette-based correlation as compared to
the commonly used SSD-based weighting functions. We show how this function can be
used to control the survival rate, an important factor for the success of both approaches.
e Third, we show that APF and PS have complementary strengths and propose a combina-
tion of both that is able to perform the tracking task with higher accuracy despite reduced
computational effort.

The remainder of this paper is organised as follows. We briefly talk about related work
in the next section. In section 3 we give an introduction to particle filtering in general and
the two variants evaluated in this paper. Section 4 describes how we do 3D human pose
estimation, focusing mainly on the 3D anthropometric model we use for tracking, but also
on our choice of motion and observation model. Section 5 describes the experiments we
conducted, including results and discussions of both approaches, and a description of the
proposed combined approach. We finish in section 6 with our conclusions.

2 Related Work

Several surveys give a good overview on recent work and taxonomies in human pose
estimation [12, 13]. Wang and Rehg [15] have evaluated variants of particle filters for
figure tracking with 22 DOF. However, they do not evaluate strategies that take advantage
of the hierarchical structure of articulated poses. Balan et al. [3] have done experimental
evaluations on 3D pose estimation using the APF, but no comparison to PS is performed.
They also provide experiments on the choice of motion and observation models. Gall et
al. [9] have presented a detailed mathematical derivation and analysis of the APF, but
again lack comparison to other methods such as PS.

Apart from particle filtering, some pose estimation approaches use optimization to
find the best pose [10]. Usually a good initial guess is needed to avoid getting trapped
in local minima, so tracking should be done at high frame rates. One option to reduce
the dimensionality of the pose space is to project it to a lower-dimensional manifold by
learning the manifold for specific activities [14]. This works well for the specified mo-



tions, but also constrains the amount of detectable motions. Methods also differ in their
used observation models. Several recent approaches use the visual hull estimated from
multiple cameras for a precise fitting of 3D models [10, 1]. Especially Anguelov et al.
[1] combine this with a highly accurate and deformable human model learned from a
database of 3D laser scans (SCAPE). However, such highly realistic models are difficult
to use with particle filtering due to the high computational complexity.

3 Particle Filtering

In a Bayesian framework, the problem of tracking human motion can be formulated as one
of estimating the posterior probability density function (pdf) p(xt ’yl;,) for the pose x; at
time ¢ given a sequence of image observations y;., up to time . This pdf can be obtained
recursively in a prediction and an update stage, given the motion model p(x, |xl,1) and
the observation model p(y, |xt) (see [8, 2] for a more detailed description).

In Sampling Importance Resampling (SIR) particle filtering (also known as Conden-
sation), the pdf if approximated by a set of N weighted particles {x,(i) , ﬂt(i) }fvzl consisting
of the state x,(i) and associated normalized weights 71:,@. In each timestep, the following
steps are performed: e During Resampling, a weighted particle set is transformed into a
new set of unweighted particles by drawing particles with probability according to their
weights. e In the Prediction step, particles are moved according to the motion model
and dispersed to represent the growing uncertainty. ® The Update step produces the new
weighted set of particles representing the pdf by assigning weights according to the ob-
servation model. An estimate of the state x; can be found by either selecting the particle
with maximum weight or by calculating the weighted mean sample of all particles.

A drawback of SIR is that the number of particles needed to approximate the pdf
(respectively for successful tracking) grows exponentially with increased dimensionality.

Annealed Particle Filtering:

Traditional SIR aims at an approximation of the pdf, whereas in high dimensional tracking
(more than 10 DOF), the number of particles is clearly insufficient for such an approxima-
tion. Usually, the strategy becomes one of focusing particles around the modes of the pdf.
To avoid getting stuck in local maxima, Deutscher and Reid [7] proposed the Annealed
Farticle Filter (APF) as a combination of particle filtering with simulated annealing.

In each timestep, a multi-layered search (starting from layer m = M to layer 0) is
conducted so that the sparse particle set is able to gradually move towards the global
maximum without being distracted by local maxima. Each of these layers corresponds to
standard SIR particle filtering, however, the weighting functions @, (Y,X) = o(Y,X)P»
are heavily smoothed in the first layers. This enables relatively unconstrained particle
motion and escape from local maxima. The smoothing of the weighting functions is
achieved by a set of values By < .. < 1 < Py, with @(Y,X) being the original weighting
function. The effect of these values is similar to the annealing schedule in simulated
annealing. The bigger B, becomes, the more constrained will the particle movement
be by the current weight. At the same time, the amount of diffusion added during the
prediction step of each annealing layer is decreased, to tighten the particle spread around
the promising areas. This is where Deutscher and Reid take the hierarchical configuration
into account, by setting the diffusion covariance P, proportional to the quality of the
localization of each individual pose parameter (Adaptive Diffusion). The search becomes
then focused in regions where the optimal parameter could not yet be determined.



Partitioned Sampling:

Fartitioned sampling is an approach at hierarchical decomposition of the state space that
has been introduced by MacCormick and Isard [11]. It can be seen as the statistical
analogue to a hierarchical search, and is especially suited to cope with the high dimen-
sionality of articulated objects. PS consists of a series of sequentially coupled SIR filters,
so that each filter estimates parts of the state space independently. The prerequisites for
using PS are fulfilled in the case of human pose estimation: The pose space can be parti-
tioned as a Cartesian product of joint angles, the dynamics of joint angles do not influence
the dynamics of hierarchically preceding joint angles, and the weighting function can be
evaluated locally for each body part.

4 3D Human Pose Estimation

We use the digital human model RAMSIS for the pose estimation (see Bandouch et al. [4]
for a detailed introduction). It is an industry-proven and far-developed model from the
ergonomics community that we have optimized for use in motion tracking. The model
consists of an inner and an outer model (Figure 1) capable of capturing different body
types according to anthropometric considerations, i.e. the different appearance of a wide
range of humans. The locations of the inner joints correspond precisely to the real human
joint locations. Poses are parametrized via joint angles. RAMSIS is able to capture most
of the movements humans can perform while retaining a correct outer appearance. Abso-
lute motion limits as well as inter-frame motion limits are integrated and help to reduce
the search space when tracking. We have simplified the original model from 65 DOF to
41 DOF for our evaluations by interpolating dependencies in the joints of the spine and
disregarding hands and fingers. The triangulation of the outer model is a good compro-
mise between accurate outer appearance and fast computations. An additional speed-up
is provided by caching of body part transformations and surface meshes, which facilitates
the use of the model for pose estimation using particle filters.
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Figure 1: 3D anthropometric human model RAMSIS with inner model (left), simplified
hierarchical structure used for tracking (center) and outer model (right).

Motion model:

As we want to be able to track unconstrained human motions, we do not use a specific
motion model except for Gaussian distributed diffusion (x,1; = x, + .4(0, 62)). The
amount of diffusion for each joint angle j is dependent on the image frames per second
(fps) and has been estimated in markerbased motion capture experiments. For a sequence
captured at 25 fps, standard deviations ¢; range from 0.5 deg for some joints in the spine



up to 38 deg for torsion of the forearms. In our experiments, we have limited o; to a
maximum of 12.5 degrees, or else the tracking would become inaccurate.

Observation model:

We use the match between the projected outer model and the silhouettes observed in the
video frames. Although no depth or luminance information is given, silhouettes provide
rich and almost unambiguous information about a human pose, given enough cameras (see
Section 5). Furthermore, they are easy to extract using standard background subtraction
techniques, and they fulfil the requirement of being locally evaluable for each body part,
as requested by PS. In contrast to [7, 3], we do not use the Mean Squared Error between
the predicted foreground pixels and the observed silhouette mask. Doing so can result e.g.
in arms being detected in front of the torso despite being apart, as the error measure is
always low for limb predictions coinciding with the torso. The usual way to compensate
for this effect is to additionally match model contours with detected image edges [7]. We
propose the following error function as an alternative:

EY = Y%y 1 =1)X0RI; i=0..N; (1)
X,y
‘ E" —min(E®)
) = ! : )
max (E") —min(E®)

Here, E(%) is the absolute error between the observed silhouette mask I, and the model
projection /, ('), calculated by applying a pixelwise XOR and counting all non-zero pixels.
el is the normalized error scaled between 0 (lowest particle error) and 1 (highest parti-
cle error). Scaling the error according to the minimal and maximal encountered particle
errors is a nice way to influence the survival diagnostic 2. The survival diagnostic was
introduced by MacCormick and Isard [11], and gives an estimate of the number of parti-
cles that will survive a resampling step. It is an important tool for controlling the particle
spread in both APF and PS. In APF, it is directly related to the rate of annealing, and is
controlled via f3,,. Instead of exponentiating the weight 7l =1—¢0 by B, a nicer way

. na\ b
to control survival is to use the function 7)) = 1 — (1 — ﬁ(’)a) , where the parameters a
and b smoothly influence the survival rate as shown in Figure 2.

Figure 2: Weight scale functions for controlling the survival rate 2. a) 7P as in APF.
b) 1 — (1 — x%)? for better control of the survival rate.

S Experiments

For the experimental evaluation we have created a simulated sequence of silhouette shapes
of our model as seen from virtual cameras (Figure 3). We use motion recovered from a
real video sequence (1700 frames, 25 fps) captured by 3 cameras as the ground truth. The
motion consists of walking in a circle and some movement on the spot, and was captured



using the PS approach (with 10000 particles) as described in the last sections, followed by
a smoothing step to remove motion jitter. The reason why we don’t use any of the publicly
available data sets is that we need the ground truth data to coincide precisely with the
joint locations in our model, so that the silhouette shapes correspond exactly to the model
projections for the ground truth. This way, the optimal pose will always coincide with
the global maximum of the weighting function. By having this exact weighting function
without any noise (and by refusing to use a specific motion model), we can concentrate
the evaluation solely on the sampling capabilities of the approaches, i.e. on how good
they are in finding the global maximum.

Cam 1 (Lower) Cam 2 (Lower) Cam 3 (Lower)

Cam 4 (Upper) Cam 5 (Upper) j Cam 6 (Upper)

Figure 3: Simulated camera positions (first column) and generated model silhouettes.

We use the 3D joint locations of the inner model for comparison, as angular data might
be ambiguous with respect to the silhouette appearance. Our error measure is the mean
Euclidean distance error in 3D of all 28 joints in the inner model. In cases where the
mean error is not able to discriminate between different approaches, we use the maximal
Euclidean distance error in 3D of any of the 28 joints. This is a good indicator when
localization fails partially, e.g. only an arm is localized incorrectly.

Number of cameras needed:

Our first experiment evaluates the influence of the number of cameras used when using
only silhouette shapes (Figure 4a). We tested tracking (PS with 5000 particles) using be-
tween 1 and 6 cameras. Camera placement is visualized in Figure 3. We placed 3 cameras
parallel to the ground plane, and 3 cameras as if they were hanging from the upper corners
of a room, a setup favourable in many situations. Furthermore, the cameras clearly differ
in their viewpoint, and no two cameras are opposite of each other, as that would result in
mirrored silhouettes without additional information gain. Obviously, tracking using only
one camera results in high errors, as occlusions of the limbs can not be disambiguated.
Two cameras still seem to be insufficient for accurate tracking, however from three cam-
eras upwards there is no qualitative improvement any more. There is also no difference
whether the 3 lower or the 3 upper cameras are used. In our further experiments, we thus
use the 3 lower cameras for tracking. An important aspect of this experiment is that the
quality of tracking can not be improved by providing more cameras, as 3 cameras seem
to be enough to dissolve all ambiguities. The minimal achievable error is then only de-
termined by the capabilities of the hierarchical sampling strategies. Our results approve a
similar experiment conducted by Balan et al. [3].

Upper Body Motions (21 DOF):
To test the behavior at around 20 DOF, we have additionally created a simulated sequence
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Figure 4: Mean Euclidean distance errors of all joints. Left: for camera count experiment.
Right: for upper body tracking experiment.

of 500 frames for upper body motions only. The sequence consists of throwing darts and
features subtle motions in the spine and the shoulder plates as well as fast motions of the
arms. We have tried to compare each method by the amount of necessary image evalu-
ations performed, e.g. APF with 20 layers and 2000 particles needs 40000 evaluations
(even more when using adaptive diffusion) and PS with 5000 particles and 7 partition
layers needs 35000 particles. The total running time is hard to generalize due to im-
plementation details. Figure 4b shows that both APF and PS perform very well with a
mean error below 20mm. In contrast, standard SIR (with 40000 particles) performs much
worse. The same experiment conducted with a fifth of the particles still showed successful
tracking with only slightly increased mean errors for both APF and PS.

Full Body Motions (41 DOF):

Accurate motion capture (e.g. in ergonomic applications) requires models with higher
complexity than the often used ~30 DOF models. In our full body tracking experiments,
we evaluated the behavior of APF and PS with respect to such challenging models. Note
that most of the DOFs in our model are critical degrees in the spine and shoulders. These
are harder to estimate than e.g. hands, that can be localized quite independently.

We started by evaluating different versions of APF, both with respect to the number
of particles/layers as well as choice of the annealing schedule. Furthermore, we investi-
gated the influence of adaptive diffusion as proposed by Deutscher et al. [6]. We cannot
provide the full evaluations here, but our results indicate that at least 20 layers are neces-
sary for somewhat successful tracking. For the annealing schedule, we tried to estimate
the parameters that worked best for our problem. Adaptive diffusion seems to be clearly
beneficial for tracking, as it provides a soft partitioning of the search space. However, the
estimation of the degree of localization for specific body parts is difficult, as a mapping
from body parts to parts of the observed silhouettes is missing. We circumvent this prob-
lem using a heuristic based on the development of the mean correlation error over APF
layers. Figure 5a shows the comparison of different APF methods.

We have compared the most successful APF method found (adaptive diffusion, 20 lay-
ers, 2000 particles) with PS using both 1000 and 5000 particles with 11 partition layers.
While the mean error does not seem to favour either method, the maximum error shows
that PS is more robust, even when using only a fraction of image evaluations (Figure 5b).
High maximum errors indicate partial tracking loss, e.g. when a single arm is falsely esti-
mated. We have also investigated different partitioning strategies for PS, i.e. breadth first
partitioning (descending all hierarchies alternately) and depth first partitioning (descend-
ing each hierarchy to the bottom before moving to the next one). However, the order of
partitioning did not have an influence on the quality of the tracking in our experiments.
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Figure 5: Left: Mean Euclidean distance errors of several APF strategies. Strategies using
Adaptive Diffusion perform best. Right: Max Euclidean distance errors for APF and PS
methods, high peaks indicate partial tracking loss. PS is more stable than APF.

Combining Partitioned Sampling and Annealing:

We are able to draw the following conclusions from our experiments:

o APF works fine between ~10 and 30 DOF, but performance decreases at higher dimen-
sions. This is unsurprising, as there is no partitioning of the search space (see Figure
7a). During each layer, pose parameters are estimated that are dependent on hierarchi-
cally preceding parameters, that in turn have not yet been estimated. In theory, even when
using a million particles, only about 1.4 particles per dimension are available in a 40 DOF
state space using combinatorics. Therefore, the amount of annealing layers must be very
high for successful tracking. Adaptive diffusion [6] is a way to improve APF by coupling
search dynamics to the covariances of the local estimates, thus creating a soft partitioning.
This improves the tracking capabilities of APF significantly, but is not sufficient to cope
with the exponential grow of the search space when tracking 40+ DOF.

o PS outperforms APF at higher dimensions as it is not affected by the exponential grow
of the search space due to its hard partitioning (see Figure 7b). However, PS is forced
to provide a good localization at early stages, or a good solution will not be found. This
is easier to achieve when using models with accurate outer appearance (as in our exper-
iments). Still it is difficult to localize the torso (usually the origin of the hierarchy) with
good precision without knowledge of the protruding limbs. In our example, the full torso
including shoulders has 16 DOF, which is problematic for the standard SIR filters used
in each partition. We therefore need to partition the torso in a lower and an upper part,
which further complicates local evaluation.

Given these insights, we propose the following combination of APF and PS. As APF
outperforms traditional SIR, we propose to use APF filters in each partition of PS. This
way, a larger initial partition (the torso) can be estimated accurately at once, reducing the
risk of pursuing wrong initial estimates due to a bad localization of the torso (see Figure
7c). We have run the following experiment to prove the validity of our proposition. We use
an APF with 10 layers and 1000 particles in the first partition of our APF+PS approach,
that consists of the torso plus thighs and the head. This partition has 19 DOF, and can be
estimated with high accuracy from silhouette shapes. The following limb partitions are
then estimated either using standard SIR or APF with only 2-3 layers. Figure 6 shows
both the mean and the max errors for APF, PS and the combined approach. Although the
combined approach runs with fewer particles and image evaluations, it outperforms both
APF and PS and shows a higher robustness. According to a dependent t-test, APF+PS
performs better than PS at 99.9% confidence level, and PS performs better than APF at
99.9% confidence level.
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Figure 6: Comparison of APF, PS and the combined approach. Left: Mean error. Right:
Max error. The combined approach runs at twice the speed and is more accurate.

6 Conclusion

We have presented detailed experimental evaluations of two common particle filter vari-
ants in the context of high dimensional 3D human pose estimation. Our results indicate
that both PS and especially APF experience difficulties when dealing with human mod-
els considerably more complex than 30 DOF. We have proposed a combined approach
that incorporates the complementary strengths of both methods to create a highly ro-
bust sampling strategy. Future directions are to further investigate this approach and to
find the best balance between APF and PS. We also want to extend the comparison to
evaluate the performance of particle filtering compared to optimization methods. Smart
particle filtering [5] is an interesting combination of both that is worth investigating. Re-
sults of our work and accompanying real tracking videos can be found on our webpage
http://memoman.cs.tum.edu. Although our tracking results from only silhouette
shapes are quite good (we were able to continuously track a sequence of 9000 frames with
only occasional errors in the upper limbs and head), a more informed observation model
incorporating e.g. local appearance is recommended to further improve robustness.
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