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Abstract

This paper focuses on semi-supervised clustering, where the goal is to
cluster a set of data-points given a set of similar/dissimilar examples. These
examples provide instance-level equivalence/in-equivalence constraints (e.g.,
similar pairs belong to the same cluster while dissimilar pairs belong to dif-
ferent clusters), but in order to aid final clustering we must propagate them to
feature-space level constraints (i.e., how similar are two regions in the feature
space?). An increasingly popular approach to accomplish this is by learning
distance metrics over the feature space that are guided by the instance-level
constraints. Inspired by the success of recent bag-of-words models, we uti-
lize codewords (or visual-words) as building blocks. Our proposed technique
learns non-parametric distance metrics over codewords from these equiva-
lence (and optionally, in-equivalence) constraints, which we are then able to
propagate back to compute a dissimilarity measure between any two points
in the feature space. There are two significant advances over previous work.
First, unlike past efforts on global distance metric learning which try to trans-
form the entire feature space so that similar pairs are close, we transform
modes in data distribution or pockets of the feature space. This transforma-
tion is non-parametric and thus allows arbitrary non-linear deformations of
the feature space. Second, while most Mahalanobis metrics are learnt using
Semi-Definite Programming (SDP), our proposed solution is developed as a
Linear Program (LP) and in practice, is extremely fast. Finally, we provide
quantitative analysis on image datasets (MSRC, Corel) where ground-truth
segmentation is available, and show that our learnt metrics can significantly
improve clustering accuracy.

1 Introduction
Traditionally, unsupervised clustering algorithms have been used to ‘discover’ the struc-
ture in the data [9]. However, recent works [10, 11, 20] are beginning to look at semi-
supervised clustering where the focus is to allow a user to ‘direct’ the clustering algorithm
to a desired output, through minimal supervision. Interestingly, computer vision has wit-
nessed a parallel in the field of image segmentation, with unsupervised segmentation tech-
niques now primarily used as an initial preprocessing step to generate superpixels [2,7] or
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multiple segmentations [8]. Methods employing varying degrees of supervision have been
proposed: from semi-supervised or interactive segmentation through scribbles, strokes or
bounding boxes [15,18] to completely supervised segmentation requiring pixel-annotated
ground-truth images [2, 7, 17]. A recent work [12] fits somewhere between the two ex-
tremes, and works with partial equivalence constraints.

This paper focuses on semi-supervised clustering, where the goal is to cluster a set of
data-points given a set of similar/dissimilar examples. These examples provide instance-
level equivalence/in-equivalence constraints (e.g., similar pairs belong to the same cluster
while dissimilar pairs belong to different clusters), but in order to aid final clustering we
must propagate them to feature-space level constraints (i.e., how similar are two regions
in the feature space?). An increasingly popular approach to accomplish this is by learning
distance metrics over the feature space which are guided by the instance-level constraints.
Inspired by the success of recent bag-of-words models, we utilize codewords (or visual-
words) as building blocks. Our proposed technique learns non-parametric distance met-
rics over codewords from these equivalence (and optionally, in-equivalence) constraints,
which we are then able to propagate back to to compute a dissimilarity measure between
any two points in the feature space. While this dissimilarity measure is not a valid metric
and thus cannot be used with a distance-based clustering technique (e.g. kmeans), our
experiments confirm that it is a useful measure for an affinity-based clustering technique
(e.g. normalized cuts [16]).

Semi-supervised distance metric learning has been the focus of a significant number
of recent works (e.g., [1, 3, 20, 22]). For a comprehensive overview of distance metric
learning and a thorough comparative analysis of recent works, the reader is referred to a
few excellent surveys [6, 21]. Xing et al. [20] learn a global Mahalanobis distance metric
for the feature space, and formulate this problem as a constrained convex optimization,
which minimizes the distance between similar data-points, while keeping dissimilar pairs
sufficiently far apart. Bar-Hillel et al. [1] also learn a Mahalanobis metric with the same
objective function but different constraints. While that doesn’t change the class of the
optimization problem, they show empirical improvements in speed. Goldberger et al.
(NCA) [5] and Weinberger et al. (LMNN) [19] learn Mahalanobis metrics to maximize
the classification accuracies achieved by the k-nearest neighbour (kNN) classifier. One
significant drawback of all these works is that they learn a global distance metric and the
same transformation is applied to the data irrespective of its location in the feature space.
In the case of multi-modal distribution of classes, learning such a distance metric can
actually result in accuracies worse than those achieved by euclidean distance [22]. More
recently, Yang et al. [22] and Chang et al. [3] have proposed methods that learn local
distance metrics.

This paper makes two significant contributions. First, unlike past works on global
distance metric learning which try to transform the entire feature space so that similar
pairs are close, we transform modes in data distribution or pockets of the feature space.
This transformation is non-parametric and thus allows arbitrary non-linear deformations
of the feature space. Second, while most of the previous works are formulated as general
constrained convex programs or semi-definite programs (SDP), our proposed solution
is developed as a linear program (LP) and in practice, is extremely fast. Finally, we
provide quantitative analysis on image datasets (MSRC [17], Corel [7]) where ground-
truth segmentation is available, and show that our learnt metrics can significantly improve
clustering accuracy.



The rest of this paper is organized as follows: Section 2 formalizes the problem state-
ment and presents our approach; Section 3 presents results on synthetic data and segmen-
tation results; and Section 4 concludes the paper with discussions.

2 Proposed Approach
Our problem statement is as follows: given

• a dataset of N points {xi | xi ∈R p, i ∈ [N]} (where we define [N] def= {1,2, . . . ,N}),

• a set of similar pairs S =
{
(xi,x j) | xi and x j are similar

}
,

• and (optionally), a set of dissimilar points D =
{
(xi,x j) | xi and x j are dissimilar

}
,

we want to learn a distance metric that minimizes the distance between similar pairs,
while keeping the dissimilar pairs sufficiently apart. The next few sections develop the
form of distances we work with.

2.1 Codeword Posteriors
The first step in our algorithm to “over-segment” the data, through an unsupervised clus-
tering algorithm. Following the notation popularized by bag-of-words models [13], we
refer to these initial set of cluster centres as “codewords”. We use a publicly-available
implementation of k-means/x-means by Pelleg and Moore [14] to perform this initial un-
supervised clustering. Our next step is to compute the posterior codeword distributions,
which can be thought of as a soft assignment of a data-point to the cluster centres. For-
mally, for some data-point i,

πi(υ) = Pr(υ | xi) (1)
∝ Pr(xi | υ) Pr(υ) ∀υ ∈ [k], (2)

where the first term is the likelihood of a feature vector given a codeword (υ), and is
modelled using an exponential kernel of euclidean distance:

Pr(xi | υ) ∝ e−
d2(xi ,υ)

σ2 . (3)

It should be noted that in the above relation we have overloaded the term υ to be both the
index of the codeword, and the corresponding feature vector in R p. The second term in
Equation 2, i.e., the marginal over the codewords could be assumed to be uniform. How-
ever, since this quantization is the result of a clustering process, we model this marginal
by the observed “popularity” of codewords at the end of the clustering process:

Pr(υ) =
#members in cluster υ

#data points
. (4)

We can also extract joint codeword posteriors for an ordered pair of data-points (i, j)
through an independence assumption:

πi j(υi,υ j) = Pr(υi, υ j | xi, x j) (5a)
= Pr(υi | υ j, xi, x j) Pr(υ j | xi, x j) (5b)
= Pr(υi | xi) Pr(υ j | x j) . (5c)



Intuitively, this means that we assume that the soft assignment of one data-point to cluster
centres tells us nothing about the way another data-point is assigned.

2.2 Distance metric
We define:

π̃i
def= [πi(1) . . . πi(k) ]T and, (6)

W =
(
wa,b

)
k×k W = W T , (7)

to be the vector holding marginal codeword posterior for data-point i and the matrix hold-
ing all possible pairwise distances between codewords. It should be noted, that wab is
not the euclidean distance between these codewords, but a parameter that we would like
to learn from data. We describe how these parameters are learnt in the next section, but
with the help of such a distance matrix and the codeword posteriors, we can define the
“expected distance” between any two points in the feature space as:

Eπi j [d(xi,x j) ] = π̃T
i W π̃ j. (8)

Consider a random experiment where the data-points (say i, j) are assigned (indepen-
dently) to codewords (say a,b) with probabilities described by their codeword posteriors
(i.e. π̃i and π̃ j). For any particular trial, the distance between these data-points can be
found by looking up the relevant entry in W (i.e. wab). The above expression (Eqn 8)
holds the expected distance between these two samples over all such quadratic assign-
ments. It should be noted that while W is a distance matrix, the expression above is not a
valid distance metric (because the distance of a point to itself is not necessarily zero), and
should just be treated as a measure of dissimilarity. The reason for working with this for-
mulation is that it helps set up an efficient optimization problem to learn these codeword
distances. Our experiments (Section 3) confirm that this dissimilarity does in fact capture
statistics consistent with the provided equivalence/inequivalence constraints.

2.3 Setting up the Linear Program
We would like to learn this distance matrix W such that the distance between similar pairs
(i.e., the pairs in S) is minimized. Clearly, some constraints are required to keep the entire
dataset from collapsing onto a point. In a manner similar to the formulation of Xing et
al. [20], we constrain this problem by requiring the distance between all dissimilar pairs
to be greater than 1 (any non-trivial distance metric that violates this property can just
be scaled to become feasible, while still remaining a valid metric). In order for W to
actually be a distance matrix, we also need other constraints: symmetry, non-negativity
and triangle inequality.1 Overall, our optimization problem may be written as:

min
W ∑

(xi,x j)∈S
π̃T

i W π̃ j (9a)

s.t. π̃T
i W π̃ j ≥ 1,∀(xi,x j) ∈ D (9b)

W = W T , wii = 0, wi j ≥ 0 (9c)
wi j +w jk ≥ wki, ∀(i, j,k). (9d)

1Strictly speaking, we learn pseudo-metrics not metrics, since wi j may achieve its lower bound (of 0).



The objective function and all constraints are linear in W and thus this problem can be
solved by standard LP solvers. If a set of dissimilar pairs (D) is not explicitly known (e.g.,
in a partial equivalence knowledge scenario [12]), then all pairs belonging to different
codewords are used for the constraints in Equation 9b. Overall, this program has O(k2)
variables (or

(k
2

)
free variables), O(N2) lower bounds on distance between data-points in

the worst case, and 3
(k

3

)
, or O(k3) triangle inequality constraints. Thus the size of this

optimization problem scales quadratically with the size of dataset, and cubically with the
number of codewords. In practice, very few codewords (5 – 30) are required, and off the
shelf LP solvers (like CPLEX) are fast enough.

3 Experimental Setup and Results

3.1 Synthetic Data
In order to better understand this algorithm, we first report results on synthetic data: “Four
Gaussians”, and “Two Moons”, as shown in Figure 1. The number of codewords (chosen
automatically by the x-means algorithm [14]) for these datasets was 4 and 10, respectively.
For the “Four Gaussians” dataset, two experiments were conducted: in the first, the two
clusters in the same row were considered ‘similar’; in the second, the two diagonal clus-
ters were considered ‘similar’ (XOR problem). For the “Two Moons” dataset, the goal
was to discover the two moons as two different clusters. The set of similar points for all
three experiments was constructed by randomly choosing 1% of all possible pairs, and our
distance metric was learnt as described above. The normalized cuts algorithm [16] was
used to generate two clusters using our learnt dissimilarity measure, and the euclidean dis-
tance. Figure 1 shows the final clustering results achieved using both distance metrics for
these three experiments. For the first two experiments (on the “Four Gaussians” dataset),
euclidean distance clustering results oscillate between the one shown in row 4 of Figure 1
and its symmetric form. Thus, euclidean distance can be expected to work half the time
for the first task (same row), but never for the second task (XOR problem). In the “Two
Moons” dataset, euclidean distance results in confusion in the centre region. Our learnt
distances result in the correct clustering for all three experiments. It should be noted that
no global linear transformation of the feature space (e.g., those used by [1, 5, 19, 20]) can
be successful in the second and third experiments.

3.2 Semi-Supervised Segmentation
We perform quantitative evaluation of our method for the task of semi-supervised seg-
mentation. We work with the 21-class MSRC [17] and the 7-class Corel [7] datasets, and
assume that the “true clustering/segmentation” is given by the class labels. Pixel-level
ground-truth annotations for these datasets are available and this allows us to measure the
performance of our method in terms of clustering accuracy. Our experimental setup is as
follows: given an input image, we extract superpixels using normalized cuts [4]. Thus,
an image represented as a collection of superpixels, forms the equivalent of a dataset of
points {xi | i ∈ [N]} from our discussion in section 2. The reason for working with a col-
lection of superpixels instead of pixels is that it ensures a locally smooth assignment, and
also speeds up the algorithm. The features extracted from these superpixels are simple
colour features (average RGB and HSV). We randomly split this collection of superpixels



(a) Data + constraints (b) Data + constraints (c) Data + constraints

(d) L2 distances (e) L2 distances (f) L2 distances

(g) L2 clustering (h) L2 clustering (i) L2 clustering

(j) Learnt expected dis-
tances

(k) Learnt expected dis-
tances

(l) Learnt expected dis-
tances

(m) Learnt clustering (n) Learnt clustering (o) Learnt clustering

Figure 1: [Best viewed in colour] Synthetic data results: The first two columns correspond
to the “Four Gaussian” dataset (with different similarity constraints); the third column
corresponds to the “Two Moons” dataset. Only a subset of the similarity constraints are
shown.



into training, validation and testing sets, while maintaining similar distribution of classes.
All possible pairs of superpixels belonging to the same class from the training set are pro-
vided as input (S) to our algorithm and distance metrics are learnt. In order to compare
our proposed method with current state-of-art techniques, the following experiments were
performed:
Euclidean (Euc) + Ncut. In this experiment, the set S was ignored, and distance between
two data-points was simply defined to be the euclidean distance between their correspond-
ing feature vectors. The normalized cuts algorithm (based on this distance matrix) was
then used to cluster the data-points (superpixels).
LMNN + Ncut. For this experiment, we learn distances using the Large Margin Nearest
Neighbour (LMNN) algorithm proposed by Weinberger et al. (LMNN) [19]. It should be
noted that this algorithm requires more information/supervision than the other methods.
It needs labels for all training data-points, and thus cannot be used for problems with
partial equivalence constraints (e.g., [12]). From the point of view of a scribble-based
interactive segmentation system, this means that in addition the scribbles, a user would
also be required to provide a mapping from the scribbles to cluster/object IDs. For this
experiment, the training set of superpixels (along with their ground-truth labels) were
provided to the algorithm, and a Mahalanobis distance over this feature space was learnt.
Normalized cuts (based on this distance matrix) was used to cluster all the data-points.
Xing + Ncut. In this experiment, the set S was provided as input to the method proposed
by Xing et al. [20] and a Mahalanobis metric was learnt. Normalized cuts (based on this
distance matrix) was used to cluster the data-points.
NPCD + Ncut. In this experiment, non-parametric codeword distances (NPCD) were
learnt using the proposed algorithm, and normalized cuts based on the expected distance
matrix was used to cluster the data-points.

For all of the above experiments, the affinity matrix (required by Ncut) was generated
via an exponential kernel over the distance/dissimilarity measure. To measure clustering
performance, we use the clustering accuracy metric proposed by Xing et al. [20]. For a
two-cluster clustering problem, it is defined as:

Accuracy = ∑
i> j

1{1{ci == c j}== 1{ĉi == ĉ j}}
0.5n(n−1)

, (10)

where 1{·} is an indicator function that is 1 if its input argument is true (and 0 otherwise),
ci and ĉi are the true and predicted cluster labels for data-point i, and n is the number of
testing samples. Basically, this metric gives an estimate of the probability that for two ran-
domly drawn points, our clustering agrees with the ground-truth clustering (on whether
these points are in the same or different clusters). As discussed by Xing et al. [20], in
the case of multi-class clustering, this metric tends to give inflated scores because a priori
most pairs will be in different clusters, and almost any clustering will predict that. Thus,
we report normalized clustering accuracies which weigh inter-cluster and intra-cluster
clustering accuracies equally. As described above, the similarity and dissimilarity rela-
tionships are taken from a subset of the superpixels in each image (training set), a disjoint
subset is used as a validation set and the accuracy measure (Eqn. 10) is computed only
over pairs from the remaining superpixels (test set). Each image is treated independently;
the training set from an image only affects the processing of that single image. The two
parameters in our algorithm: number of codewords k, and scaling coefficient in the ex-
ponential kernel σ are chosen such that validation set accuracy is maximized. For both



Clustering Accuracy (%)

Euc + Ncut Xing + Ncut LMNN + Ncut NPCD + LMNN

MSRC 56.5 ± 0.7 69.7 ± 0.7 67.8 ± 0.7 72.9 ± 0.7
Corel 59.5 ± 1.1 74.0 ± 1.1 69.8 ± 1.1 75.7 ± 1.1

Table 1: Clustering accuracies for the 21-class MSRC and the 7-class Corel datasets.
NPCD significantly outperforms baseline methods.

(a) 2% (b) 6%

Figure 2: Effect of annotations on size of S

the datasets, we work with a random train-val-test split of (20%-40%-40%), which results
in the set S containing approximately 2% of all pairwise constraints (that could be con-
structed among the given set of superpixels). Figure 2 help us develop an intuition for the
scale of this ratio, by showing two scribbled images, and the size of the resultant similar-
ity set S. We note that this level of annotation can be provided by a user with minimal
effort through an interactive system.

Comparison. Table 1 compares the performance of our proposed non-parametric code-
word distances (NPCD) with these baselines. For both the datasets (MSRC and Corel),
test set clustering accuracy averaged over all images is reported, and 95% confidence
intervals were determined through analysis of variance (ANOVA). We can see that on
both the datasets, our proposed method outperforms all three baselines. Figure 3 shows a
few example segmentations achieved by our method, compared to the euclidean distance
based segmentations. We can see that in the case of multi-coloured objects (which can be
thought of as a multi-modal distribution in colour space), euclidean distance based seg-
mentation tends to cut along colour boundaries which are in fact not object boundaries.
Our method, on the other hand, is able to learn, e.g. in the case of the ‘sign’ in row 1, that
the distance between ‘blue’ and ‘white’ is low and is thus able to keep them both in the
same cluster, while separating them from the ‘brown’ regions of the background. A sim-
ilar example is shown in row 6, where euclidean distance based segmentation is unable
to keep ‘black’ regions of the sheep (head and feet) in the same segment as the rest of its
body, because it is understandable that those two colours are far in the feature space. Our
algorithm, however, can learn that those two regions of space are actually close by, and
thus does a better job of segmenting the sheep.



Figure 3: [Best viewed in colour] Example segmentation results on MSRC: column 2
shows the ground-truth segmentaiton; column 3 shows segmentations achieved by eu-
clidean distances; and column 4 shows segmentations achieved by our learnt distances.

4 Conclusions
We focus on semi-supervised clustering, where unlike unsupervised clustering, the goal
is not to ‘discover’ structures in the data, but to develop tools that would allow a user
to guide the clustering algorithm towards a desirable output with minimal input. We
develop a new algorithm for this task by learning non-parametric distance metrics between
codewords (in the feature space). Unlike past works on global distance metric learning,
which learn a global linear transformation of the feature space, we transform modes in
data distribution or pockets of the feature space. This transformation is non-parametric
and thus allows arbitrary non-linear deformations of the feature space. On synthetic data,
we were able to visualize the need for such non-linear transformations (XOR task and
Two Moons), and show how our method is successfully able to handle these cases. We
also pose interactive segmentation as a semi-supervised clustering problem, and show
that our method outperforms state-of-art metric leaning techniques on standard datasets
(MSRC, Corel).
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