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Abstract

This paper deals with the problems of scene illumination estimation and
shape recovery from an image sequence of a smooth textureless object. A
novel method that exploits the surface points estimated from the silhouettes
for recovering the scene illumination is introduced. Those surface points are
acquired by a dual space approach and filtered according to their rank errors.
Selected surface points allow a direct closed-form solution of illumination.
In the mesh evolution step, an algorithm for optimizing the visual hull mesh
is developed. It evolves the mesh by iteratively estimating both the surface
normal and depth that maximize the photometric consistency across the se-
quence. Compared with previous work which optimizes the mesh by estimat-
ing the surface normal only, the proposed method shows better convergence
and can recover better surface details, especially when concavities are deep
and sharp.

1 Introduction

The problem of shape recovery from an image sequence has been well studied in the com-
puter vision community over the past two decades. For texture-rich objects, techniques
based on matching correspondences across images [12, 10], can be applied to recover
the shape by triangulation, mesh evolution[3], surface growing[5], or graph cut[6]. For
smooth textureless objects, however, correspondences cannot be established easily. A
common approach to handle this class of objects is to make use of the silhouette informa-
tion. Each silhouette, together with the camera center, defines a viewing cone in which
the object surface is inscribed. The intersection of the viewing cones generated from a
set of silhouettes observed at different viewpoints then produces the visual hull [13, 4]
of the object. Given a large number of silhouettes observed at distributed viewpoints, the
visual hull often gives a very good approximation to the object surface. However, surface
details such as concavities can not be observed from the silhouettes and therefore can not
be recovered.

As opposed to silhouette-based methods, methods based on shadings, like photometric
stereo [11, 1], are able to recover the surface details of a complex object with concavi-
ties. For Lambertian objects, the shading of a surface point depends on both the surface
orientation and the illumination direction. Theoretically, given the shadings of a point

BMVC 2008 doi:10.5244/C.22.89



observed under varying but known illumination, its surface normal vector can be esti-
mated. Alternatively, the illumination direction can be recovered from the shadings of at
least three points with known but unparalleled orientations. The main challenge in using
photometric stereo is how to identify the shadings of the same surface point in different
images, which is analogous to the correspondence problem in multi-view stereo. Most ex-
isting algorithms avoid such a problem by limiting their considerations to the case where
the object and camera are relatively fixed while the illumination is varying. This, how-
ever, limits their methods to producing only a 2.5D depth map instead of a complete 3D
reconstruction.

In this paper, we consider the problem of recovering a complete and detailed 3D
model of a smooth textureless object from an image sequence. We address this problem
by proposing a multi-step method that combines the strengths of both shape from silhou-
ettes and shape from shadings. The proposed approach begins by generating a coarse
model (i.e., the visual hull) from the object silhouettes, and then optimizes the model
using shading information to recover concavities as well as other surface details. In or-
der to make use of shading for the surface optimization, it is necessary to recover the
scene illumination, which is equivalent to solving the GBR ambiguity. This is achieved
by first recovering the surface points of the object from its silhouettes using a dual space
method [14], and then measure the rank 1 error inspired by [8] to drop out those surface
points whose errors are larger than a predefined threshold. The rest surface points are used
to estimate the illumination direction and magnitude by a closed-form solution. Besides,
a novel algorithm for optimizing the visual hull mesh is also developed, which evolves
the mesh by iteratively estimating both the surface normal and depth that maximize the
photometric consistency across the sequence. Compared with previous work, experimen-
tal results show that the proposed method gives better convergence and can recover better
surface details, especially when concavities are deep and sharp.

2 Related Work

In the literature, there is a plethora of works concerning the recovery of shape from image
sequences. For smooth textureless objects, Jin et al. propose two variational algorithms
to jointly estimate the shape and surface reflection.[8, 7] As noted in [17], however, their
methods tend to produce models lacking of surface details due to the insensitivity to the
depth and the strong regularization term. In [16], Vogiatzis et al. propose to decouple
the recovery of shape and illumination by exploiting frontier points[2]. Frontier points
and their surface normals can be conveniently estimated from the epipolar tangents to
the silhouettes, and provide local surface geometry for illumination estimation. However,
such an approach is not always applicable to real sequences acquired around a target
object (e.g., turntable sequences), since the number of available frontier points are usually
small and their projections in the images are close to the boundaries of the silhouettes.
This may lead to a low accuracy in the illumination estimation. In [17], Vogiatzis et al.
proposed a RANSAC approach to estimate the illumination from a visual hull mesh. In
the RANSAC process, vertices in the mesh which are lying on the object are defined as
inliers, whereas the rest of the vertices are treated as outliers. This approach avoids the
problem of not having sufficient frontier points with stable shadings. In practice, however,
only a very small portion of the vertices are actually lying on the object surface, and this



will result in a large number of samplings required by the RANSAC algorithm.
This work reconstructs the objects by optimizing the photometric consistency of their

Lambertian components. The radiance tensor rank proposition proofs that for non-Lam-
bertian objects, the specularity of surface reflection can be either absent or washed out [8]
under a point light source with the camera far away from the object. Hence glassy ob-
jects with no specularity obey Lambert’s reflection Law almost perfectly in the real world.
Our experiments on real data show high convergence under the assumption of Lamber-
tian surfaces, which reconfirm the above proposition. The proposed method follows the
same strategy of [17], which first constructs a coarse mesh model by a shape from silhou-
ettes method, followed by illumination estimation, and finally optimizes the mesh using
photometric consistency constraint. It differs from [17] in 3 main aspects:

• In the shape from silhouettes, instead of using just a volumetric approach to con-
struct a visual hull mesh, we also adopt a previously developed dual space method
[14] to recover surface points, with normals.

• In the illumination estimation step, instead of using a RANSAC approach, we use a
rank constraint to drop out the outliers, which allows a direct closed-form solution.

• In the mesh optimization step, instead of evolving the mesh by iteratively estimating
the photometric normal, we estimate the photometric depth along with the normal
by maximizing the photometric consistency.

The rest of this paper is organized as follows: Section 3 introduces a novel way for
precise estimation of the scene illumination by exploiting the recovered surface points.
Section 4 derives a new functional based on the photometric normal and photometric
depth for optimizing the visual hull mesh. Experimental results and analysis are presented
in Section 5, followed by conclusions in Section 6.

3 Illumination Estimation Using a Closed-Form
Solution

Consider an image of a Lambertian object with constant albedo and under a single distant
light source. The shading (or intensity) of a visible surface point in the image is given by

i = nTl, (1)

where n is the outward-pointing unit normal vector at the surface point, and l is the 3D
lighting vector directed towards the light source and scaled by the intensity of the light
source. Equation (1) gives a linear constraint on the 3 unknowns of l. It follows that l
can be uniquely determined from the shadings of 3 visible surface points with known but
distinct surface normals. In this paper, the surface normals and positions are provided by
surface points recovered using a previously developed dual space method [14].The visual
hull mesh constructed from the silhoettes is used to infer the visibility of these points.
The shading of a surface point can be obtained by projecting it onto the image using the
projection matrix of the camera.

However, due to noise and insufficient sampling rates, it may produce poor estima-
tions over bumpy surface, surface concavities and near frontier points. To overcome this



problem, we employ a rank constraint to classify the surface points into two groups.[9] To
exclude those surface points whose positions are far from the true objects or disturbed by
shadow or specularities, we remove those who have large rank 1 errors. Figure 1 shows
effect of the selection according to the rank 1 errors.

(a) (b) ( c )

Figure 1: (a) Original model. (b) Surface points recovered using dual space method. (c)
Selected surface points (red) used in illumination estimation. The light blue points over
the concavities are dropped out as outliers.

4 Mesh Optimization

Having the scene illumination estimated from the surface points, we next describe a
method to optimize the initial visual hull mesh. Our goal is to evolve the mesh so that
its appearance predicted using the estimated scene illumination matches its actual appear-
ance observed in the image sequence.

4.1 Photometric depth and photometric normal

Given more than 3 shadings under linearly independent lights, the surface normal can be
easily estimated by solving a equation system. To make the difference from the original
normal, the estimated one is termed as photometric normal, the same as [17]. For mesh
triangles near the true object surface, the photometric normals usually can be robustly es-
timated and the vertex optimization step can drive those triangles towards the true surface.
For mesh triangles in the visual hull over a concave section of the object, however, their
projections on different images correspond to the projections of different surface points
on the true surface which are far apart from each other (see Figure 2). It results in erro-
neous photometric normals and the vertex optimization step may drive those triangles to
crazy positions. In order to make the optimization converge, the regularization term has
to be enforced, resulting in loss of fine details.

In this paper, we introduce the photometric depth to solve the problem of erroneous
photometric normal. The key idea is to estimate both the surface normal and depth for
each mesh triangle that maximize its photometric consistency. To compute the photo-
metric depth, we first offset the triangle along its normal direction, then compute the



Initial surface

C1

C2

C3

C1

C2

C3

x

i
3
’ i

1
’

i
2
’ i

1
i i

2 3

x

True surface x
r

λ

(a) (b)

Figure 2: Illustration of the error at concave section. (left) C 1,C2,C3 correspond to cam-
era centers under different illuminations. i ′1, i

′
2, i

′
3 in the left figure are the wrong intensities

used for calculating the photometric normal at point x. The right figure shows the pho-
tometric normal computation with correct intensity i1, i2, i3 collected at real surface point
xr. The offset from x to xr is the photometric depth and is denoted as λ . Comparison be-
tween the photometric consistency achieved by optimizing photometric normal only, and
by optimizing photometric normal and depth together. (right) Brighter color corresponds
to lower photometric consistency. (a) optimizing photometric normal only. (b) optimizing
photometric normal and depth.

photometric normal of the triangle for that particular offset value. The offset value that
maximizes the photometric consistency of the triangle is taken as its photometric depth
λ f , and the corresponding normal is taken as the photometric normal v f . This is shown:

v f ,λ f = argmin
v,λ

K

∑
k=1

Φ f (k)Ψ f (k)‖lTk v− i f ,k(λ )‖2, (2)

where Φ f (k) ∈ [0,1] gives the visibility of the triangle in the k-th image, Ψ f (k) ∈ [0,1]
gives the visibility of the triangle from the light source l k, λ is the offset of the triangle, v
is the unit photometric normal computed at the offset position, and i f ,k(λ f ) is the average
of the shading values under the projection of the offset triangle in the k-th image.

In our current implementation, Equation (2) is only applied to those triangles visible
from at least four images to compute their photometric depths and photometric normals.
For triangles visible in less than four images, their photometric depths are set to zero
and their surface normals are used as the photometric normals. Figure 2 shows the im-
provement in photometric consistency achieved by optimizing both photometric depth
and photometric normals. It can be seen that the improvement is particularly significant
in the concave sections.

4.2 Evolving the mesh

The estimated photometric depths and photometric normals of the mesh triangles are used
to drive the mesh vertices towards the true object surface. This is achieved by optimizing
the following cost function

x1, ...,xM = arg min
x̂1,...,x̂M

F

∑
f=1

(‖κ f −λ f‖2 + α‖n f − v f‖2)Af (3)



where n f is the unit surface normal of the f -th triangle, κ f is the distance between the
centroid of the f -th triangle and the centroid of the f -th triangle in the previous evolution
step, Af is the area of the f -th triangle, and α is a weighting factor used to balance the
effect of the depth energy and the normal energy. Note that n f , κ f and A f all depend on
the f -th triangle formed by the mesh vertices x̂1, ..., x̂M .

In our implementation, we minimize (3) in two separate steps. The overall algorithm
is shown in algorithm 1.

Algorithm 1 Multi-view photometric reconstruction
1: Extract silhouettes from the image sequence;
2: Estimate the camera projection matrices;
3: Construction the visual hull and contour generators from the silhouettes;
4: Estimate the illumination for each image;
5: while not converged do
6: Estimate photometric normals and photometric depth;
7: Optimized the mesh vertices to converge to the photometric depths and photometric

normals;
8: end while

5 Experiments

Figure 3 shows the final reconstruction results of the synthetic model Venus and Bunny,
using the proposed method. Compared with the initial visual hulls, it can be observed that
surface details in the concave sections are recovered.

Figure 3: The reconstructions by the proposed method. (left) The initial visual hull mod-
els. (right) The final surfaces after evolutions have converged.

We also compare the performance of the previous mesh optimization method in [17]
with the proposed method. Both methods begin with the same initial surface, and the
same amount of regularization energy is assured. The quality of the reconstructed model
is measured by a standard evaluation algorithm introduced in [15] in which the distances
of all vertices to their nearest points on the ground truth are calculated.

For the Venus model, the mean distance to the ground truth with respect to evolution
iterations is plotted and compared in Figure 5 (left). We can see that the mean distance
of the model reconstructed using Vogiatzis et al.’s method gradually increases, which



indicates their method tends to produce a larger model. On the other hand, the mean
distance of the proposed method gradually decreases to a very small value, showing the
proposed mesh converges toward the ground truth. Figure 5 (right) shows the result for
the Bunny model which shows similar trends. This can be explained as Vogiatzis’ energy
function does not incorporate the depth information.
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Figure 4: Comparison between previous method [17] and the proposed method. (top row)
Venus model. (bottom row) Bunny model. (left column) mean error. (middle column) the
standard deviation. (right column) vertices distribution.

The standard deviations in error distance of the two methods are also plotted with
respect to evolution in Figure (middle). We can see that the standard deviation in error
distance of the model reconstructed by the proposed method drops faster and converges
to a smaller value than Vogiatzis’ method.

In Figure (right), we compare the distribution of vertices of the previous method and
that of the proposed method for the Venus model. We obtained the models after the
two methods fully converged. It can be seen that around 90% of vertices in the model
produced by our proposed method fall within a distance of 0.02 to the ground truth, while
only 55% of the vertices produced by the previous method fall within the same distance.
This indicates the proposed method reaches a higher precision than the previous method.

Figure 5 shows the comparison of reconstructions of the Venus model without any
regularization. We can see that the proposed method captures the sharp and deep concav-
ity between the legs. While in the previous method, the triangles were driven to incorrect
positions by the wrong photometric normal over concavities. The ill-shaped triangles
prevent the mesh from converging onto the real surface.

We also test the proposed method using a real world porcelain figurine sequence,
which is the same sequence used in [17]. The sequence contains 36 images, with a reso-
lution of 922×1158 under 3 different illuminations, each illumination is kept fixed over
12 images. Figure 6 shows the previous method produced an over smoothed surface under
the chin while the proposed method captures the sharp shape due to the constraint of the
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Figure 5: Comparison of the vertices between the previous method and the proposed
method without regularization. (a) Ground truth. (b) Previous method. (c) Mesh struc-
ture of previous method suffers from serious self-crossing problem due to the incorrect
photometric normals over the concavities and fails to recover the concavities without reg-
ularization. (d) Proposed method. (e) Mesh structure of the proposed method shows a
better control over the mesh structure and recover the concavities successfully.

photometric depth. Figure 7 shows another example of reconstruction obtained using the
proposed method.

(a) (b) (c) (d)

Figure 6: Close-up comparison between the previous method and the proposed method.
(a) Real images. (b) Visual hull. (c) Previous method. (d) Proposed method.

6 Conclusion

In this paper, we present a novel method for recovering scene illumination and recon-
structing a complete detailed 3D model for textureless objects. The proposed method
utilizes the true surface points estimated by a dual space approach and directly recovers



Figure 7: Reconstruction results using the proposed method. From the first row to the
last, original image, visual hull, and reconstructed model.

the illumination with a closed-form solution. With the estimated illumination, a surface is
recovered with concavities and other details by iteratively optimizing photometric infor-
mation and vertex positions of the surface. Unlike existing approaches, besides photomet-
ric normal, we take the photometric depth into account during the optimization process,
and this enables the approach to converge more effectively and be able to handle deep
and sharp concavities. Experimental results demonstrate that the proposed method can
achieve better result both quantitatively and qualitatively compared with other existing
approaches.
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