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Abstract

We present a novel approach for human activity geitmn. The
method uses dynamic texture descriptors to desbiiibgan movements in
a spatiotemporal way. The same features are alsd tme human
detection, which makes our whole approach compmurtally simple.
Following recent trends in computer vision reseaotltr method works on
image data rather than silhouettes. We test ouhadebn a publicly
available dataset and compare our result to the sfahe art methods.

1 Introduction

Human activity recognition has become an importasearch topic in computer vision
in recent years. It has gained a lot of attentiegabise of its important application
domains like video indexing, surveillance, humampater interaction, sport video
analysis, intelligent environments etc. All thegplacation domains do have their own
demands, but in general, algorithms must be ableetect and recognize various
activities in real time. Also as people look di#fat and move differently, the designed
algorithms must be able to handle variations iriguering activities andhandle various
kinds of environments.

Many approaches for human activity recognition hlagen proposed in the literature
[4, 12]. Recently there has been a lot of attentovmards analysing human motions in
spatiotemporal space instead of analysing eacheficfrthe data separately.

Blank et al. [1] used silhouettes to construct acsptime volume and used the
properties of the solution to the Poisson equatimractivity recognition. Ke et al. [7]
build a cascade of filters based on volumetricuiest to detect and recognize human
actions. Shechtman and Irani [19] used a correlabased method in 3d whereas
Kobyashi and Otsu [10] used Cubic Higher-order Lo&atocorrelation to describe
human movements.

Interest point based methods that have been qofelar in object recognition have
also found their way to activity recognition. Laptet al. [11] extended the Harris
detector into space time interest points and dededbcal structures that have
significant local variation in both space and tiniee representation was later applied
to human action recognition using SVM [17]. Dolktral. [3] described interest points
with cuboids, whereas Niebles and Fei-Fei [13] usellection of spatial and spatial
temporal features extracted in static and dynantarést points.
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Figure 1. lllustration of a person running and ¢oerespondingt andyt planes from a
single row and column. The different frames correspio thexy planes.

Kellokumpu et al. [7] used a texture descriptionctoaracterize Motion History
Images and showed that a collection of local festwan form a very robust description
of human movements. We build on this idea and eitka idea of using histograms of
local features into a spatiotemporal space. Furmbeg, following recent trends in
computer vision, we propose a method that is desiga work with image data rather
than silhouettes. The method is based on using andgntexture descriptor, Local
Binary Patterns from Three Orthogonal Planes (LBP-JTQB represent human
movements. The LBP-TOP features have successfully bses for facial expression
recognition [22]. Niyogi and Adelson [14] propostitd use ofxt slices for detecting
contours of walking people. We propose a methodhfonan detection that uses the
LBP-TOP features (the same features we use for hunmion description), making
the combined approach computationally simple.

The rest of the paper is organized as follows. 8ecH introduces the dynamic
texture descriptors. Section 3 describes theiriegibn to human detection and activity
recognition. We show experimental results in Sectiand conclude in Section 5.

2 Dynamic Texture Descriptors — LBP-TOP

LBP operator [15] describes local texture patterthai binary code, which is obtained
by thresholding a neighborhood of pixels with thraygvalue of its center pixel. An
image texture can be described with a histogratheof BP binary codes. LBP is a gray
scale invariant texture measure and it is comparatly very simple which makes it
attractive for many kinds of applications. The LBR@ior was extended to a dynamic
texture operator by Zhao and Pietikédinen [22], whoppsed to form their dynamic
LBP description from three orthogonal planes (LBP-T@P) space time volume.
Figure 1 shows the spatiotemporal volume of a peraaning from left to right. It also
illustrates the resultingt andyt planes from a single row of and column of the wwdu
as well as the first and lasy planes that are the frames themselves. The LBP-TOP
description is formed by calculating the LBP feasufrem the planes and concatenating
the histograms.

The original LBP operator was based on a circularpsiam pattern but different
neighbourhoods can also be used. Zhao and Pietikgimeposed to use elliptic
sampling for thext andyt planes:
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whereg. is the gray value of the center pixgl, () andg, are the gray values at tRe
sampling points:X-Rsin(2tp/Pxy), Ve, te-RCOS(Ztp/Pyy)) for xt plane and similarlyx¢ y.
-Rsin(2np/Pyy), t-Rcos(2ip/Pyy)) for yt plane.Ry is the radius of the ellipse to direction
of the axisd (x, y ort). As thexy encodes only the appearance, i.e., both axes have t
same meaning, circular sampling is suitable. Thaest, for points that do not fall on
pixels are estimated using bilinear interpolation.

In this work we consider only the usage of the terapplanes, namely thd andyt
planes. The reason for this is the variability ia #ppearance of humans and different
environments. They plane contains a lot of useful appearance infdomabut it
should be noted that the temporal planes do alsmden some of the low level
appearance information.

3 Dynamic Texture Method for Human Motion
Description

In this section we introduce a novel approach faman activity recognition. We use
the LBP-TOP descriptors to locate a bounding volufmleuman inxyt space and then
use the same features for describing human movemdfihally the temporal
development of the features is modelled using Hiddarkov Models (HMMs).

3.1 Human Detection

Many approaches to human activity recognition rety background subtraction for

extracting the location and shape of people in widequences. As the background
subtraction is the first stage of processing in yrilamman activity recognition systems,

it has a huge effect on the overall performanceuch systems. Also, many background
subtraction methods are computationally expensikeraemory demanding. This limits

their possible usage in systems requiring procgssirvideo rate.

We tackle the problem of computation cost by uding same features for both
human detection and activity recognition. Usualackground subtraction is done by
modelling the pixel color and intensities [9, 2@].different kind of approach was
presented by Heikkila and Pietikéinen [5] who idioed a region based method that
uses LBP features from a local neighbourhood. Thefopred the subtraction by
extracting the features in each frame. Unlike theirk, we do not consider the image
plane itself but instead the temporal plaxesndyt.

We adopt the idea of codebooks [9] in our approand represent each local
neighbourhood with a set of cod€sAs observed by Heikkila and Pietikdinen [5], the
thresholding operation in the LBP feature extracttan be vulnerable to noise when
pixel values of a neighborhood are close to one¢hemoTherefore a bias is assigned to
the center pixel which means that the tetgy — g) in Eq. (1) is replaced with the term
s(g, — @ + &). Thus, our background model consists of codelf®aind the bias for
each pixel for both the temporal planes.

We process the incoming data in overlapping voluofedurationAt that is defined
by R, i.e.,At = 2R+1. Each volume has a center frame that forms theecgixels for
the feature calculation and each frame acts astercEame on its turn. If the observed
LBP code of a pixel neighborhood of the input votudoes not match the codes in the
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Figure 2. lllustration of LBP patterns that représem motion. The two images on the
left illustrate a state a static scene containiognotion and a resulting plane. The bit
patterns illustrate the resulting codes that dodesicribe any motion. Consider nearest
neighbor interpolation for the simplicity of thdéustration and also note the bias on the
center pixel.

corresponding codebook, the neighbourhood arouaed:#mter pixel is determined to
belong to an object. The result frothandyt planes can be combined using the logical
and operator. With this method, we can extract thenlgling volume (3D equivalent to
a bounding box in 2D) of a human in each space Viohg@me.

For the current application, the detection parids adaptive. The method is capable
of extracting the rough human location and thisrisugh for our system. The proposed
detection method can be extended to be adaptighanges in the background and that
topic is under investigation though out of the scogpf this paper. We present
preliminary experimental results in Section 4.

3.2 Activity Description

The previously introduced dynamic LBP features aredu$or human activity
description and the input for activity recognitiare the dynamic LBP features
calculated from the detected humsyt volumes. However, a couple of points need
addressing to enhance the performance of the &satur

As we do not use silhouette data but rather ancxjpated bounding volume that
contains the human, our input also contains sorakgraund information as well as the
static human body parts. The appearance of theseneemn the volume only depends
on the structure of the scene and the clothinghefgerson and does not contain any
useful information for motion description. Considkee images illustrated in Figure 2.
Static parts of the images produce stripe likegpa$t for thext andyt planes. As we
wish to obtain a motion description, we can defimelearn by observing static scenes)
those stripe patterns in the LBP representationramive the corresponding bins from
the histogram. The stripe patterns are always thre $ar a given LBP kernel only their
relative appearance frequency depends on the sterure. Figure 2 also illustrates
these LBP codes for an eight point neighbourhoodtir@uoff these bins reduces the
histogram length for an eight point neighbourhootb i240 bins instead of 256, but
more importantly, it also improves the motion dgsan.



Feature histogram of a bounding volume

Figure. 3. lllustration of the formation of the fege histogram from a bounding
volume.

The dynamic LBP features calculated over the wholsndimg volume area encode
the local properties of the movements without amfprination about their local or
temporal locations. For this reason we partitiom ¥olume into subvolumes and form
the feature histogram by concatenating the subwelbistograms. Using the subvolume
representation we encode the motion on three diftdevels: pixel-level (single bins in
the histogram), region-level (subvolume histograamd global-level (concatenated
subvolume histograms).

To obtain a rough spatial definition of human movetasgwe divide the detected
bounding volume through its center point into faegions. This division roughly
separates the hands and legs of the person inwvieegboints when thet is small or
the person does not move much. Using more blocksldvof course allow a more
detailed description but would also produce mooalitnistograms and make the whole
histogram too long. Using too many blocks coula aigke the system too sensitive for
stylistic variation of performing activities.

The subvolume division and the formation of our deathistogram are illustrated in
Figure 3. All the subvolume histograms are conathand the resulting histogram is
normalized by setting its sum equal to one.

3.3 Hidden Markov Model

As described earlier, we extract the dynamic fegtdfirom a space time volume of short
duration. We then model the development of ourufiest using HMM. Our models are
briefly described next but see tutorial [16] for maletails on HMMSs. In our approach
a HMM that hasN state9Q={q,0y,...dn} is defined with the triplet = (A,x,H), where

A is theNxN state transition matrixs is the initial state distribution vector and tHds
the set of output histograms.

The probability of observing an LBP histogrdugs is the texture similarity between
the observation and the model histograms. Histograersection was chosen as the
similarity measure as it satisfies the probabdigtbnstraints. Thus, the probability of
observinghysin state at timet is given as:
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Figure 4. lllustration of the temporal developmeftthe feature histograms and a
simple HMM. This example shows a 3 state left-tdgyigMM.

P(hobs | St = q|) = z min(hobs’ h) ' (2)

wheres is the state at time stdpandh; is the observation histogram in statelhe
summation is done over the bins.

Figure 4 illustrates how the features are calcdlaietime evolves and a simple left-
to-right HMM. We can use different kind of modeptdogies to model different kind
of movements. Circular models are suitable for nioderepetitious movements like
walking and running, whereas left-to-right modelte suitable for movements like
bending for example.

HMMs can be used for activity classification byitiag a HMM for each action
class. A new observed unknown feature sequéethge={hopg,Nobe,---hopst Can be
classified as belonging to the class of the modelt tmaximizesP(Hq,d 4), the
probability of observingHq,s from the modek. The model training is done using EM
algorithm and the calculation of model probabititiean be done using forward
algorithm.

4 Experiments

We demonstrate the performance of our method bgréxpnting with the Weizmann
dataset [1]. The dataset has become a popular bankidatabase [1, 2, 6, 8, 13, 18,
21] so we can directly compare our results to atheported in the literature.

The dataset consists of 10 different activities qrenkd by 9 different persons.
Figure 5 illustrates the activities. In the follawgi subsections we show experimental
results on human detection, feature analysis anthhuactivity classification.

4.1 Detection

To get our background model we need to learn thelwmok and bias for each pixel on
two spatiotemporal planes. We train our model wifie frames where there is no
subject in the space time volumes.

In the background model training we calculate thdebook for each pixel with all
bias values betweea,, and an,, and we choose the codebook (and the corresponding



Figure 5. lllustration of the movement classeshim Weizmann database. Starting from
the upper left corner the movements are: Bendingyping jack, Jumping, Jumping in
place (‘Pjump’), Gallop sideways (‘Side’), Runningkipping, Walking, Wave one
hand (‘Wavel’) and Wave two hands (‘Wave2’)

Figure 6. lllustration of the human detection perfance. The last image on the right
illustrates the bias foyt plane feature calculation for the scene viewed tex. The
binary result images illustrate the center pixeisth® input volume that have been
determined to not belong to background and thectitebounding volume.

a) with the smallest number of codes. If codebode $6 the same with multiple bias
values, we choose the one with smallest bias. fregperiments we usea,i;=3, 8ma=8
and eight point neighbourhoods with raBiF1, R=2 andR=1 which means\t=3.
Figure 6 gives examples on the performance.

It should be noted that the learning method isimiehry and not optimal. But as
mentioned earlier, the development of the detegiam is out of the scope of this paper
and under current work.

4.2 Feature Analysis and Activity Classification

First we want to illustrate how the proposed fesduthemselves can describe the
characteristics of different movements. We firdtekated the LBP-TOP features for
the dataset and for each movement we summed ttogtdms over the duration of the
activity and normalized the histogram sum into ofiéis representation of the
movements does not contain any temporal information

Result of feature analysis is illustrated in Figat® where each row and column
represent the similarity of one sample to all otb@mples. Histogram intersection was
used as a similarity measure. The parameters usettiefdllustration ardR=1, R=1,
R~=2 andP,=P,=8. It can clearly bee seen that even without anypbral information
the features form clusters and different movemardéssomewhat separable.



=3 ° 9 ° a g X~ e 9
- o X [} = > >
EgESseefE g §252855358¢§
oS SsTxonn 322 )
Bend Bend
Jack Jack
Jump q A | v k- Jump 8 1 | 1
. - 11 Lo it
Pjump - Pjump
Run - o b
_ T i Run
Side L - == Side
Skip = i Skip »
L =
Walk . 11 Walk
Wavel : . Wavel 0
Wave2 b Wave2
(a) (b)

Figure 7. (a) lllustration of similarity of movemsnin the database, darker regions
show higher similarity (b) the classification retsul

We performed the activity classification experingeah the Weizmann dataset using
HMM modelling and leave one out cross validatione HIMM topologies were set to
circular for all cyclic activities and left-to-righmodels were used in other cases. We
used HMMs with seven states and were able to §a£8.6% of the examples
correctly using the same parameters as in the quevbubsection. Figure 7b shows the
confusion matrix of the classification.

Results achieved by others on this database arenatined in Table 1. From the
image based approaches Boiman and Irani [2] réperbest overall recognition result,
but their test set does not include 8igppingclass It is easy to see from the confusion
matrix in Figure 7b that this extra class causebwl one of the mistakes we make in
the test set. We also run the test without thepskg class and were able to classify
98.7% of the movements correctly. To our knowleage, method gives the best results
on the database when image data is used as areinghig also very competitive against
approaches that are based on silhouette data.

Table 1. Results reported in the literature for Weizmann database. The columns
represent the reference, input data type, numbeabivity classes, number of
sequences and finally the classification result

reference input act seq result
Our method image data 10, 90 95.6%

(9] (81 (98.7%)
Scovanner et al. 2007 [18] image data 10 92 82.6%
Boiman and Irani 2006 [2] image datg 9 81 97.p%
Niebles et al 2007 [13] image datg 9 83 72.8%
Kellokumpu et al 2008 [8] silhouettes 10 D0 97.8%
Wang and Suter 2007 [21] silhouette$ 10 90 97/8%
Ikizler and Duygulu 2007 [6] | silhouettes 9 81 106.0




5 Conclusions and Future Work

We have proposed a novel dynamic texture based oshefor human activity
recognition. We extract LBP-TOP features in spatigeral space and use them to
detect human bounding volumes and to describe humarements. The method is
computationally simple and utilizes image dataeathan silhouettes, which makes it a
suitable method for many applications. We have shtivat our preliminary detection
method can find human regions in spatiotempora datl we show excellent results on
human activity classification on a popular benchndatabase.

As future work, we plan to develop the detectiort pad make it more accurate and
adaptive to changes in the background. Also, asxyhplane contains much useful
information we intend to examine how the data frilw@xy plane could be efficiently
fused into the description.
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