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Abstract

A novel approach to learning and tracking arbitrary image features is
presented. Tracking is tackled by learning the mapping from image inten-
sity differences to displacements. Linear regression is used, resulting in low
computational cost. An appearance model of the target is built on-the-fly by
clustering sub-sampled image templates. The medoidshift algorithm is used
to cluster the templates thus identifying various modes or aspects of the target
appearance, each mode is associated to the most suitable set of linear predic-
tors allowing piecewise linear regression from image intensity differences to
warp updates. Despite no hard-coding or offline learning, excellent results
are shown on three publicly available video sequences and comparisons with
related approaches made.

1 Introduction

The objective of this paper is to track without the need for hard coding and offline learning
of either the variation in target appearance or motion models and is therefore applicable
to a wide range of applications and scenarios. Yilmazet. al introduced a taxonomy of
tracking methods [15]. Within this taxonomy, our work falls into the class of methods
identified as multi-view kernel methods. However unlike other methods reviewed, our
approach learns the views of the target online.

Alignment based tracking approaches obtain the warp parameters by optimising the
registration between the appearance model and a region of the input image according
to some similarity function (e.g.L2 norm, normalised correlation, Mutual Information).
Optimisation is often carried out using gradient decent or Newton methods and hence
assumes the presence of a locally convex similarity function with a minimum at the true
warp position. A limiting factor for such methods is the range or size of the basin of
convergence. Trackers with low range require low inter-frame displacements to operate
effectively and hence must either operate at high frame rates (with high computational
cost) or only track slow moving objects.

For a visual tracking approach to be useful it should operate at high frame rates, track
fast moving objects and be adaptable to variations in appearance brought about by occlu-
sions or changes in pose and lighting. This is achieved here by employing a novel, flexible
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and adaptive object representation for efficient tracking comprised of sets of spatially lo-
calised linear displacement predictors adaptively associated to aspects (clusters) of a tem-
plate based appearance model. Linear predictors can have a wider basin of convergence
than registration methods and due to their simplicity are computationally efficient.

Previous linear predictor trackers have tended to rely on hard coded models of object
geometry [11, 10]. This requires significant effort in hand crafting the models and like
simple template models [9, 1, 12], are susceptible to drift and fail if the target appear-
ance changes sufficiently. Systems that use a priori data to build the model [2] or train
the tracker offline [14] can be more robust to appearance changes but still suffer when
confronted with appearance changes not represented in the training data.

Incremental appearance models built online such as the WSL tracker of Jepson et
al. [7] have shown increased robustness by adapting the model to variations encountered
during tracking, but with high computational overhead.

Recent approaches that achieve real-time tracking and have adopted an entirely online
learning paradigm are; the discriminative tracker [6] that uses an online boosting algo-
rithm to learn a discriminative appearance model on the fly, the SMAT algorithm[3] and
variants such as [4, 5]. In the SMAT approach, a greedy clustering algorithm is used to
learn a multi-modal appearance model of the object. The prototype of each cluster is then
used in an LK framework [1]. Our approach maps appearance to variable banks of lin-
ear predictors which are constantly updated. Appearance is modeled using the recently
introduced medoidshift algorithm to incrementally cluster templates.

1.1 Displacement prediction

Cootes et al. proposed a method for pre-learning a linear mapping between the image in-
tensity difference vector and the error (or required correction) in AAM model parameters
[2]. Jurie et al. employed similarlinear predictor(LP) functions to track rigid objects [8].
Williams et al. presented a sparse probabilistic tracker for real-time tracking that uses an
RVM to classify motion directly from a vectorised image patch. The RVM forms a re-
gression between erroneous images and the errors that generated them. The recent work
of Matas et al. [11], uses simpler linear regression for displacement prediction, similar to
the linear predictor functions in [8] and [2].

A key issue for LP trackers is the selection of its reference point, i.e. its location in the
image. In the work of Marchand et al. predictors are placed at regions of high intensity
gradient [10] but Matas et al. have shown that a low predictor error does not necessarily
coincide with high image intensity gradients [11]. In order to increase efficiency of the
predictors, a subset of pixels from the template can be selected assupport pixelsused for
prediction. Matas et al. present a comparison of various methods for learning predictor
support, including randomised sampling and normalised reprojection, and found that ran-
domised sampling is efficient and sufficient [11]. The approach presented here avoids the
need for costly reference point and support selection strategies by evaluating the perfor-
mance of a predictor over time and allowing poor performers to be replaced as opposed
to minimising a learning error offline. Unlike the approach presented here, each of the
displacement prediction trackers detailed in [11, 14, 10] require either an offline learning
stage or the construction of a hand coded model or both.



Figure 1: Overview of approach: LPs each make a prediction, the contribution to the
overall output is based on the LPs association to appearance clusters

2 Methodology

The proposed approach tracks a target object by online learning of constellations of spa-
tially localised linear displacement predictors and associating them to aspect specific com-
ponents of a multi-modal template based appearance model. Figure 1 illustrates the ap-
proach when applied to face tracking. The approach requires no offline learning stage or
hand coded models and only requires that the initial location of the target be given.

The appearance model is learnt on-the-fly during tracking by clustering sub-sampled
image patches or templates drawn from the tracked target position in every frame (see
section 2.2). These templates are clustered online yielding modes that represent differ-
ent views or aspects of the target. The appearance model is illustrated in figure 1 by the
bank of templates and the clustered distance matrix. Also learnt online is a set of lin-
ear regression functions that predict motion parameters from image intensity difference
vectors (see section 2.1). Tracker output is computed as a weighted mean from these pre-
dicted displacements. Weightings reflect each predictors association to the current target
appearance as predicted by the appearance model.

The performance of each predictor is continually evaluated over time and is used to
update the weighting matrix and hence its association to the various aspects of the target.
Furthermore, new predictors are learnt every frame to replace the worst performers.

2.1 Linear predictor tracker

The linear displacement predictors compute motion at a reference point from a set of
pixels sub-sampled from its neighbourhood called the support setS = {s1, ...,sk}. The
intensities observed at the support setS are collected in the observation vectorl(S). The



Figure 2: Intensity difference images for eight translations. Four support pixel locations
illustrate the predictive potential of the difference image. The input image is in the center.
All images to the left/right of the input have been translated left/right by 10 pixels. Those
images above/below the input have been translated by 10 pixels up/down. Under the
images, the motion and support vectors are illustrated.

l0(S) vector contains the intensities observed in the initial image. Here the motion is a 2D
translationt, we use(S◦ t) = {(s1 + t), ...,(sk + t)} to denote the support set transformed
by t. Translation is sufficient as the multi-modal appearance model copes with affine
deformations of the image templates, also shown in [4].

Predictions are computed as in Eq. (1) whereH is a (2× k) matrix that forms a linear
mappingℜk → ℜ2 from image intensity differences,d = l0(S)− l(S◦ x), to changes
in warp parameters,δx. The state vector,x, is the 2D position of the predictor after
prediction in the last frame. This efficient prediction only requiresk subtractions and a
single matrix multiplication, the cost of which is proportional tok.

δx = Hd = H(l0(S)− l(S◦x)) (1)

In order to learn the linear regressor,H, training examples of{δxi ,di} pairs, (i ∈
[1,N]) are required. These are obtained from a single training image by applying syn-
thetic warps and subtracting the deformed image from the original. For efficiency the
warp and difference computation is only performed at the support pixel locations but, for
illustration, the result of performing this operation on the entire image is shown in figure 2
for eight different translation warps. Also marked on the figure are four possible locations
for support pixels and the unique observation patterns they produce.

Linear predictor reference points are selected at random from within a predefined
rangeRof the object center and support pixels are randomly selected from within a range
r of the predictors reference point. The next step in learning the linear mappingH is to
collect the training data,{δxi ,di} into matricesX, (2× N), andD (k× N) whereN is the
number of training examples. The least squares solution, see Eq. (2), is thenH.

H = XD+ = XDT(DDT)−1 (2)



The parameterR determines the range around the target center that predictors are
placed, it is set according to the size of the initial template. The parameter,r, defines
the range from the reference point within which support pixels are selected as well as the
range of synthetic displacements used for learning the predictor. Larger increases the
maximum inter frame displacement at the expense of alignment accuracy. Ranger is set
to 30 to allow a maximum of 30 pixel interframe displacement. The predictor complexity,
k, models the trade off between speed of prediction and accuracy.N does not affect
prediction speeds but instead parameterises a trade off between predictor learning speeds
and accuracy. In all the experimentsN=150 andk=100 give sufficient accuracy whilst not
hindering the goal of real-time tracking.

2.2 Medoidshift clustering for online appearance modeling

Figure 3: The distance matrix pre and post clustering is shown with three subsets of ex-
emplarsA, B andC. SetsA andC are temporally separated but have the same appearance.
Templates from each subset are also shown.

The appearance model presented here is constructed online by incrementally clus-
tering sub-sampled image patches to identify various modes of the target appearance
manifold. If a single template appearance of an object is considered as one point on
the appearance-space manifold, the manifold can be represented by storing all templates,
T = {G0...Gt} drawn from all frames{F0...Ft}.

Clustering the set of appearance templates,T, identifies different views or aspects
of the target and facilitates the use of view specific displacement predictors as described
in section 2.3. The clustering is performed by the medoidshift algorithm introduced by
Sheikh et. al [13] using the SSD between subsampled image templates. Medoidshift
is a nonparametric clustering approach that performs mode-seeking by computing shifts
toward areas of greater data density using local weighted medoids. As Sheikh et. al show,
the procedure can be performed incrementally, meaning the clustering can be updated at
the inclusion of new data samples and the removal of some existing data samples.

During each of the first 10 frames of tracking, the sub-sampled image templates are
collected into vectors{G0...G10} and a distance matrix is populated with the SDD dis-
tances. On frame 11 the medoidshift algorithm partitions the distance matrix to obtain
an initial template clustering and then for each subsequent frame the clustering is incre-
mentally updated given a newG vector and hence (by computing SSD values) a new
row/column of the distance matrix. In order to constrain the memory requirements and
computational complexity of maintaining the appearance model, the number of templates
retained, and hence the number of data points clustered, is limited. Once the limit has
been reached the oldest template is removed and replaced with the new template. Now
the cluster update must accommodate both the introduction and removal of data points.



The incremental update is achieved in a computationally efficient manner exactly as de-
scribed in [13].

The effect of this clustering, illustrated in figure 3, shows the distance matrix at frame
275 of a head tracking sequence (see section 3 for details of video) before and after matrix
indices are sorted according to the clustering.

2.3 Aspect specific predictor tracking

Each cluster of appearance templates can be viewed as a particular aspect of the target
object. Furthermore, a cluster may represent the appearance of the target during occlusion,
lighting changes or motion blurring. By learning cluster specific predictor weightings,
each predictor can be associated to a greater or lesser extent to each aspect or appearance
mode. This, combined with the continual learning of new predictors enables this approach
to continue to track through significant appearance changes.

The weighting mechanism is achieved by an association matrix,A, as illustrated in
figure 1. Given a bank ofP linear predictors and a set,T, of M appearance templates,T =
{G0...GM}, the association matrixA has dimension (P×M). The value atApm indicates
the strength (or weakness) of association between predictorp and template (exemplar)m.
The values ofA are set and updated using Eq. (3) and (4). Equation (3) shows how the
prediction error is computed and used to initialise the association values between each
predictor and the new exemplar. The error is theL2 norm distance between the expected
and observed pixel intensities at the predictors support pixel locations. Eq. (4) is used to
update the association values for all the other exemplars in the active cluster,Ta⊂ T. This
has the effect of smoothing the performance measures within a cluster. The values are a
running average prediction error with exponential forgetting; meaning that low values of
Apm indicate greater association between predictorp and clusters containing exemplarm.
The rate of forgetting is determined by parameterβ=0.1, set experimentally. In all the
experimentsP=80 andM=500, also set experimentally.

ApM = ‖lp
0− lp

M‖, p = 1...P (3)

Apm =
{

((1−β )∗Apm)+(β ∗‖lp
0− lp

M‖), p = 1...P if Gm∈ Ta

Apm if Gm /∈ Ta
(4)

This error function and update strategy are used to continually evaluate predictor per-
formance over time. This provides a means for appearance dependent weighting of each
predictors contribution to overall tracker output,δ x̄, as defined in Eq. (5) and Eq. (6).

W p= 1− ∑M∗
m=1Apm

max∑M∗
m=1Apm

,M∗ = |Ta| (5)

δ x̄ =
∑P

p=1 (Wp∗δxp)

∑P
p=1Wp

(6)

The continuous evaluation of predictor performance also allows poorly performing
predictors to be replaced by predictors learnt online. The worst predictor,p∗, is identified
as in Eq. (7). The entries inA relating to the replaced predictor are updated as in Eq. (8).



p∗ = arg max
{p=1,...,P}

( min
{m=1,...,M}

Apm) (7)

Ap∗m =
∑P

p=1Apm

P
,m= 1...M (8)

The complete tracking algorithm is summarised in Algorithm 1.

Algorithm 1 Complete tracking procedure

F0←first image
Initialise target position̄x0 and sizeR from user input
for p = 0 toP do

xp = rand(−R/2 : R/2) {Randomly select reference point}
Generate{δxi ,di} {Training data}
ComputeHp as is Eq. (2)
Wp← 1 {Set all initial predictor weights to 1}

end for
while Ft 6= NULL do

Computeδxp as in Eq. (1) for p ={0 ... P}
Computeδ x̄ as in Eq. (6)
Update predictor statesxp = xp +δ x̄
Extract new appearance templateGt

Compute new row and column of distance matrix, SSDGt and{G0...Gt−1}
ObtainTa⊂ {G0...Gt−1} {Obtained by clusteringT = {G0...Gt−1}}
Update association matrix,A, as in Eq. (3) and Eq. (4)
Identify worst predictor as in Eq. (7)
Learn new predictor as in Eq. (2)
if new predictor performance≥ old predictor performancethen

Replace worst predictorp∗

Update association matrix,A, as in Eq. (8)
end if
Compute predictor weightings for next frame as in Eq. (5)
t← t +1

end while

3 Evaluation

The system is demonstrated on three publicly available1 challenging and varied video
sequences, that illustrate the systems ability to track objects through large inter frame
displacements with robustness to changes in target appearance brought about by changes
to pose and occlusion, see figure 4. For comparison, four alternative trackers were run
on the athletics and camera motion sequences, figure 5, namely the inverse compositional
algorithm for the Lucas Kanade (LK) tracker [9], SMAT [4], SMAT using a bank of

1http://info.ee.surrey.ac.uk/Personal/L.Ellis/research.html



Figure 4: Tracking results obtained from running the tracker on three varied video se-
quences.

LPs per mode rather than gradient descent and finally a ’flock’ of LPs with no learnt
appearance model and no relearning.

Datasets: The athleticssequence is 430 frames long, all the trackers fail at around
frame 400 but up to that point only the trackers with learnt appearance models (SMAT,
SMAT with LPs and the proposed medoidshift with LPs) track the target successfully,
figure 5. The target changes scale considerably during the sequence and, as the tracker is
not scale invariant, new scales are treated as new appearance modes. The use of LPs with
the SMAT appearance model performs similarly to the proposed medoidshift with LPs
(LP MED), as both approaches have the benefit of a wide basin of convergence and multi-
modal appearance. However, SMAT requires optimal parameter selection for clustering
e.g. Number of modes, learning rate.

The second sequence, captured from a low cost web cam, is of a static scene and
a moving camera. The camera undergoes considerable shaking causing large inter frame
displacements as well as translation, rotation and tilting. Figure 6 shows three consecutive
frames. The displacement predicted from frame 374 to 375 is 37 pixels (16 vertical and
33 horizontal) and despite the significant blurring in frame 375, the tracker still succeeds
in making a low error prediction to frame 376. Due to online learning of predictors, some
are learnt from blurred images allowing for prediction during this blur. Figure 5 shows
the error plots generated by the five trackers on this sequence. Due to the limited basin
of convergence both the alignment based trackers fail to deal with the large inter frame
displacements and SMAT loses track as soon as the camera starts to shake. The final
sequence is a head tracking sequence lasting 2500 frames with the head undergoing large
pose variations and at one point becoming occluded by a cup for over 100 frames.

For each sequence the target patch is identified by hand only in the first frame, all
algorithm parameters are unchanged between sequences. Ground truth for every frame of
the athletics and camera motion sequences was achieved by hand labeling and was used
to generate the error plots in figure 5.

The tracker runs at 15-20 fps even with the clustering procedure carried out in Matlab
with high parameter passing overheads. This could be improved by implementing in C++.



Figure 5: Error plots comparing the performance of five trackers on the athletics and
camera motion sequence. This tracker is denotedLP MED. The other trackers:SMAT, LP
SMAT(a tracker using the SMAT appearance model with LPs),LK (Lucas Kanade) and
LP FLOCK(one constellation of LPs with no appearance modeling and no relearning).

Figure 6: Prototypical results show large inter frame displacement are handled as well as
predicting from very blurred images

4 Conclusion

This approach to tracking visual features requires no offline learning or hard coded models
and reduces the need for tuning parameters. It is shown that the approach can handle large
inter frame displacements and adapt to significant changes in the target appearance with
low computational cost.

The advantages of such a simultaneous modeling and tracking approach are clear
when considering how much hand crafting, offline learning and parameter tuning must
be done in order to employ many existing object tracking approaches. Many applications
require tracking that operates at high frame rates and can handle high object velocities as
well as be robust to significant appearance changes and occlusion. This is achieved here
by utilising the computationally efficient technique of least squares prediction and online
target appearance modeling.
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