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Abstract

This paper is about shape fitting to regions that segment agerand some
applications that rely on the abstraction that offers. Toeetty lies in three
areas: (1) we fit a shape drawn from a selection of shape &snifiot just
one class of shape, using a supervised classifier; (2) Weessdts from
the classifier to match photographs and artwork of particuligects using a
few qualitative shapes, which overcomes the significaf¢dihces between
photographs and paintings; (3) We further use the shapsifideigo process
photographs into abstract synthetic art which, so far asiveakis novel too.
Thus we use our shape classier in both discriminative (nreg¢land gener-
ative (image synthesis) tasks. We conclude the level of atigin offered by
our shape classifier is novel and useful.

1 Introduction and Background

We wish to be able to describe any image using a collectiomofva shapes, specif-
ically: ellipses, rectangles, triangles and convex hulewimone of the others fit well.
Fitting these shapes to image segments generates a diescwpich offers a high level
of abstraction which can be used in many applications. Tiseag@recedent for choosing
just these few simple shapes: both individual artists arb8Is of Art in the early 20th
century advocated the use of these shapes as basic con$tnupinting. The artists
found these shapes sufficient to model the visual world, ycivd) both figurative and ab-
stract painting. This providgsima facie evidence that these shapes make a powerful but
simple descriptive set. We suggest they are useful too inpien Vision, and provide
two applications in support of this claim. One is procesgphgtographs into abstract
artwork, of possible value to the entertainment industie dther is image matching. In
particular we are able to match photographs to artwork, vbauld be of possible value
in, say, content based retrieval applications.

In overview, our approach is as follows. First we segment@agie, using N-cuts [4],
chosen for its simplicity. The choice of segmentor is not ém@nt for shape fitting.
Indeed, the shape fitter should operate independently csegbmentor. Second we op-
timally fit known shapes to each segment, and also robustlydanvex hull [13]. The
description is now ready for use in applications.

The shape fitting literature is large, so here we mentiorgtistv examples. Shape fit-
ting is usually restricted to a single shape model. For m=acircle fitting has been used
for locating lunar craters [15] and soccer balls [18], eliiditting for face detection [20]

BMV C 2008 doi:10.5244/C.22.45



and the analysis of potatoes [23], superellipses for miblgsdctangles for buildings [10],
regular polygons for road signs [3]. But our task is to chdose amongst several shape
families.

Fitting multiple shape models and then selecting the mgstagiate is less common,
and several problems arise. The first is that it is often coisve to fit different types of
models using different error measures, which if they arecootparable cannot be used
together as the basis of model selection. Second, the fétirogs from models of differ-
ent complexity cannot be directly compared since the highéer models can always be
expected to have a lower error of fit. Many schemes have begoped to overcome this
problem, one of the earliest being Akaike’s informatioriamion (AIC) [1]. They operate
by providing a measure that in addition to the fitting errombines and penalises the
complexity of the model. For instance, AIC is defined-a&log(likelihood) 4 2k where
k is the number of parameters in the model. However, due toiffereht assumptions
made by the various criteria regarding the distributiorhef data, the different measures
can give quite different results. For instance, Schwarzgd3ian information criterion
(BIC) [17], which is similar to the Minimum Description Letig(MDL) criterion, pe-
nalises free parameters more strongly than AIC. Anothéerioin, the “geometric infor-
mation criterion” was introduced by Torr [21], later the Gyeetric AIC” was suggested
Kanatani [9]; both specifically designed for computer visapplications. Gheissari and
Bab-Hadiashar [7] provide a review of such methods.

Itis clear there is no single agreed way to fit some shape fromenhan one family.
Issues of concern in the mathematical and computer visierature are the robustness
of the fit with respect to outlying data points, and the inade of the fit under trans-
formations of the data. The most common types of fitting in patar vision minimise
some function (e.g. sum of squares) of the residuals. Wethateneasures are usually
chosen for their mathematical tractability and computeatla@onvenience and complex-
ity, rather than how well they correspond to perceptual athaatic judgements. Yet if
we are to match photographs to human-made artwork, and tegsa photograph into
a synthetic artwork these value judgements are crucial. &/e therefore opted to use a
classifier which is trained under human supervision, in thigehto retain some degree of
subjectivity..

Next is Section 2, which describes how we fit shapes from eédtheofamilies we
have chosen, and also how to choose amongst these classespsdormance data for
the classifier is given. In Section 3, we provide details of @mpplications: matching
photographs to artwork, and automatically processingguraphs into artwork. Finally
we conclude the paper in Section 4 by observing that sincenatcher operates well, and
our synthetic art is of high aesthetic value, that our shafer fs fit for purpose.

2 Method

We now describe how to fit a simple shape to an image region. adewunt follows
the order of our algorithm: first optimally fit several shapese from each of several
classes; second choose amongst the optimally fitted shiajete second step which is
of the greater interest to this paper, since that is wherelholres. The choice is made
with a classifier, so this section concludes with some paréorce data to characterise the
classifier.



2.1 Fitting Shapes of a Single Type

We fit four categories of shape. Three of them we call “knowatduse they can be
gualitatively labelled: ellipse, triangle, and rectangle

Voss and Sul3e described a powerful method for fitting a tyaoiegeometric primi-
tives by the method of moments [22]. The data is first norredlisy applying an appro-
priate transformation to put it into a canonical frame. Tliedi geometric primitive is
then simply obtained by taking the geometric primitive ie tanonical frame and apply-
ing the inverse transformation to it. For instance, for dips they take the unit circle
as the canonical form, and apply an affine transformatiosisting of a translation to set
the momentsn g = mp; = 0 and an anisotropic scaling such thap = my, = 1. We have
applied this approach to fit ellipses, rectangles and ttémng

The convex hull is an attractive symbolic representatiom shape on two counts.
It is generally more compact (using only a subset of the nabpolygonal vertices),
and also perceptually simpler since all indentations haentremoved. However it has
two limitations: it is insensitive to the size and shape ofralentations, and is also too
sensitive to protrusions. To overcome these problems Rosiiviumford [13] suggested
a “robust” version of the convex hull, which is the convexymmin that maximises the area
overlap with the input polygon. To compute the robust cornwvelk they used a genetic
algorithm.

2.2 Selecting One Shape From Many

We are now able to optimally fit a collection of simple shapegach region within a
segmented image. The problem now is how to choose amongst tinéeraction is one
approach, but not only is this tedious for the user but, wei@ris less interesting than
considering automatic choice. Others have approachednatito selection through an
information theoretic measure of some kind; Gheissari aad-Badiashar [7] provide
a review and an empirical comparison of these. As we havadrebserved, these
measures are chosen for their mathematical tractabiliycamputational convenience.
But just as RMS between a decompressed image and its origikabwn to be a poor
measure of subjective loss in quality, so these measure®doetessarily correspond
well to human judgement of shape. It is reasonable to ads&rusing shape to match
photographs to artwork, and indeed synthesising artwank fphotographs, pre-suppose
some level of human judgement. Therefore, we opted in faebar trained classifier;
training allows some subjectivity into the process. We napl&n our classifier and the
training regime.

Selecting appropriate shape models is done using a supéwlassification paradigm.
Specifically, a C4.5 decision tree [12] is learnt from a tiragrset of regions which is then
applied to new unseen data. The basis of a decision treetisdbh feature can be used
to make a decision that splits the data into smaller subgatstioning feature space into
equivalence classes using axis-parallel hyperplane$ ltdlds decision trees by select-
ing the most informative feature (that is not yet considenetthe path from the root) to
split each subset. An entropy measure called normalisedration Gain [12] deter-
mines the effectiveness of each feature.

Regions are described by a feature vector and are manubdildd into shape cate-
gories. These features are the basis for making the deaisgarding which is the most
appropriate model. The feature vector consists of the glretween the region and each



of the fitted shape models. To compute the errors at each datiztipe shortest distance to
the fitted shape is determined using the distance transtdawever, the summed error is
not a sufficient descriptor — it is easy to construct examiplagich the best shape model
(according to aesthetics and perceptual criteria) doebana a lower summed error. In-
stead the more information distribution of point errorsassidered, and summarised by
the following statistics: mean, standard deviation, skevd kurtosis.

2.3 Performance Data

In this section we provide some performance data by whicludgg the classifier. We
restricted ourselves to training with the simple shapelig$e”, “Rectangle”, “Triangle”,
and (robust) “Convex hull”. The training data came from Nscsegmentations [4], we
used 35 instances of each known shape to train. To test wefurdkdr data, again from
N-cut segmentations, and so produced the confusion matfiiable 1.

ellipse | rectangle| triangle | convex hull
Ellipse 32 1 1 1
Rectangle 4 29 1 1
Triangle 3 1 30 1
Convex Hull 1 1 1 32

Table 1: The confusion Matrix, scaled by 35 (the number dfainses per known class).
Each row (capital letters) shows the result of classifyirgr@und truth set of a known
shape. The fraction of times a ground truth shape class $sified as some nominated
shape class is given. Each ground truth class containecdt&hices.

A natural question to ask is “how much confidence can one hatkd confusion
matrix?”. Related to this is “when can training cease?”. réhis a common answer
to these: cease training when the confidence matrix consecga stable solution, so
that one can have confidence it is “correct”. Figure 1 shows the maximum absolute
change in any confusion matrix element (normalised by thed ttumber of samples at
each step) depends on the number of training data. It showsmweease training after
35 or so training data per shape class.
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Figure 1: The maximum absolute change in any normalisecusami matrix element as
a function of the number of training data in each shape class.



3 Applications

We have used our shape fitter in two applications: paintirgyrmatching. That these
ostensibly distinct applications are related should notd@emuch of a surprise, since
for a painting to be understood as representing some reddwbject one must be able
to construct a mapping between them. Here we show we canesjistart work from a
photograph, and also match photographs to artwork. Takgether, these applications
provide strong evidence of the utilitarian value of desaghimages using simple shapes.

3.1 Matching Photographswith Artwork

Our first application is matching photographs with artworkis is of interest in further
applications, such a content based retrieval. The problginmaatching in this case is that
the “character” of the two images can differ significanthairRings can comprise large
regions of flat colour, photographs usually have far moraitliet them than is necessary
to convey the content, including complex light effectsttegs and so on.

This problem has been sparsely addressed in the liter&ahechtman and Irani [16]
assert that any textures can match, provided the are sefistent. Bakt al. argue that
structure is a class invariant [2]. Fidler and Leonardisridéeee structures premised upon
Gabor filter responses [6] and use that tree to identify mpegific objects classes; some
supervised training is required at the higher levels of the.tWe continue the theme of
abstract invariance by using qualitative shape as a majghimitive. This has the added
advantage of allowing us to generate as well as classiffhaséxt application makes
clear.

Our matcher accepts two images as input and returns a lisatifhad regions. The
regions are produced by the N-cut segmentor [4]. This setpnesquires a single num-
ber,N, as input, and segments an image into that many segmentss&\feeveral values
of N, specificallyN = 3i, fori € [1, 8] to obtain 8 “levels”, each of finer granularity than
the last. The nodes on the different levels generate a nierarchy — a tree — based
on overlap.

Given two images we manually select a particular level frast pne of them. This
level is selected to give an acceptable segmentation ofoitegfound object of interest.
This is reasonable, given the complete lack of prior infdiaraabout what constitutes a
semantic object. Our selections could be input to yet amatlssifier, which might then
act in the manner of Fidler and Leonardis [6], but that isfeitirork. This foreground ob-
jectthen acts as a query image. The matcher is to locatelif@stan the tree representing
the second image.

The problem now is to find matches between two subtrees (ctwe forests), each
of which corresponds to a foreground object in an image. Eade has a shape fitted
to it, using the classifier, so also has a label which is an eferof 2 = {E,R T,C},
corresponding to the four classes of training shape. Thewaaise qualitative shapes
means we wish to match through the shape labels that thefidasssigns. These we
will call “observed” labels. The real, underlying shapedhfor a region is unknown to
us — because the classifier may have assigned an incorrett lab

The rationale for using observed shape labels is that isgeea quick and easy way
to match, and is naturally invariant to many geometric tfamss, to clutter, and noise:
matching photographs to artwork makes all of these dematidsised N-cut segments to



train, because we intended to use N-cuts to segment and n#dtbbugh we have opted
to use qualitative data we nonetheless benefit from the aurea$the probability that
two symbollic shapes match. We will estimate the probahihiat two observed. labels
a andb, say correspond to the same underlying shape, the ideritishwh is never
revealed. The confusion matrix in Table 1 plays a centr& iothis estimate.

Each row of the table gives the conditional probabifitg|Z), which is the probability
that a knowmamed shapeZ which is input to the classifier is assigned tiserved label
a. For examplep(e|T) is the probability that a triangle is classified as an elljgsaVe
will continue to use upper case letters for known inputs odlassifier, and lower case
for the labels it produces. Each row of the confusion mataig bonstant names shape
each column has constant observed ctaddsing Bayes’ law we get the probability that
a given observatioa is really a named shape

p(a2)p(2)
p(a)
We know for sure that all named shapes exist atleast once suenep(Z) = c for all

Z € Z. The probability of observing the labal requires us to marginalise over the
named shapes:

p(Zla) = (1)

pa)= Y p(alz) ®)
e

Now suppose we have two shapes with observed classes (i@nea given by the clas-

sifier) a andb. The probability that these are both of the the same nameueshés

p(Z|a,b). By appeal to conditional independence (and assumingttatiindependence
on the observations) we get

p(Zla,b) = p(Z|a)p(Z|b) 3)

The probability that the observed shameandb are the same underlying (but never
revealed to us) shape is therefore

e

So p(a,b) is a table entry that estimates the probability that two pleklabels corre-
spond to a named shape, matching in a qualitative sense.

Figure 2: Parts of a drawn car and parts of a photographic af are matched, as shown
by the colour coded regions.



Figure 4: A painting and a portrait are matched, as shown lyuceoded regions.

The probability tablgy(a, b) is used to weight all matches between the regions in the
two trees (forests). At the top-most level (the largestrsest regions) we consider all
putative pairs of matches. We do likewise at the next levelrdavhich expands each
of the matched pairs. Recursive application generates ahatige of all possible pair
combinations. Match-tree branches are pruned where bdtret are not connected to
both parents; ie. if (a,b) is a parent to (c,d) and (a,c) armeoted in image one, then
(b,d) must be connected in image two. We seek the path of naddrobability in this
tree. A path comprises a string; of matched pairs, each region appears at most once in
such a string. The probability of the path is thef”’) = My p)c.~P(a,b). Since paths
can be of different lengths we normalise to take the geomatweérage, sp(.7)(1/|.7]).

This is equivalent to a “characteristic” radius of.&| dimensional hyper-ellipse whose
main axis radii are the probabilities along the path.

Results from some of our matched photograph/painting paérshown in Figures 2, 3,
and 4. The matcher has successfully matched corresponretjgns in these images,
even where colour and and other properties differ signiflgaht has not succeeded in
matching as well as would wish. At the moment our explandtemwith the N-cut seg-
mentor, because it can be unreliable. Despite this, thesdtsandicate that qualitative
shape can be used to as the basis of a matcher. Beside maichirsg photographs and



artwork, a qualitative matcher such as ours might be useditialise a more complex,
guantitative matcher. Or, the same matcher as ours mighddgeted to include measure-
ment data: e.g. how similar is a region to each of the shapsesa or the convex hull
could be used as a kind of “wild card” on the grounds that sbingtclassified as that
could in principle be just about any shape.

The point of this matcher, though, was to explore the paddyiloif using nothing but
gualitative data. Our results show that even such weak messan prove useful.

3.2 Synthetic Abstract Art from Photographs

In our second application, we use the shapes fitted by the skwsfier as used by the
matcher to create synthetic artworks of an abstract naBpecially, the types of abstract
artworks we produce are largely motivated by artists sudfesslinsky and late Matisse,
who used pure geometric shapes as primitives to createvaot.répresentative artworks
are “Several Circles, 1926” by Kandinsky, where objectsrapgesented as a collection
of circles and “The Snail, 1952-53" by Matisse, where he wsedllection of paper cut-
outs to create a snail. For copyright reasons, examplesbfatworks can not be shown
here, but can be readily found on-line. Our classifier alldvessynthetic art to be created
which is more abstract in nature than is typical — most of ttegdture concentrates on
making marks [8, 14] rather than producing abstractiomoalgh the field is moving in
that direction [11].

We start by segmenting the image into different granuksitising the same segmen-
tor used in the matcher, except that only two levels of grarityl are sufficient in this
application. Specifying these two levels is the only usegriaction we require, and these
two remain valid for many images, typically = 50 for fine detail, and antll = 5 for
coarse background, are input to N-cuts [4]. So, in many cHsesiser just needs to
specify which image is to be processed.

The finer segments are rendered on top of the coarser oneslpw@fter filtering out
some of the detailed shapes; otherwise too much detail iwrshdo filter non-salient
detail we use colour differencing. The colour of the fine segtris compared to that
of the coarse segment it overlays. Colour differences am@sored in terms of just no-
ticeable difference (jnd) in CIELAB colour space. For imsta, colours(L1,a3,b;) and
(L2,a2,by), have colour differencAE; as follows

\/(Ll —Lo)®+ (a1 — @p)° + (by — bp)?

AE;, =
12 jind

(5)

wherejnd =~ 2.3 in CIELAB colour space [19]. By thresholditE we can control the
level of detail to render on the top layer; increasing theshold results in less shapes
being rendered and vice versa. A constatvalue of 5 is used to make all rendering in
this paper.

Order matters rendering shapes into a frame-buffer, becshapes fitted to regions at
a singleN often overlap. We tackled this problem by introducing a shfiing errort.
Given a shape mod8&and its corresponding regidn 1 is defined as the following ratio,
ISNR)|/ISUR)|, which is a form of Tanimoto similarity score, calculateda@per pixel
basis. Shapes with large fitting errors are rendered befimsetwith smaller errors. To
create an embossed look, to the paper cuts we counted theenafnéhapes lying over



each pixel; the resulting height field became a bump map. 8atertransparent paper we
simply used “alpha” colour channel. Figures 5 and 6 show ssengple output.

Figure 5: Left, the photograph car in Figure 2 has been rextbas paper cut-outs, which
show the shape fitted to each region. Right, a photograph ofvaflis rendered, this time
as transparent shapes.

Figure 6: Left, an original photograph, right an abstratiio shapes. This shows that
simple shapes are sufficient to capture the essence of a icatepl image: the lack of
detail can be advantageous and even desirable.

4 Discussion and Conclusion

This paper provides a novel method to fit not just a single sha@ region, but a way to
classify a region as some shape from amongst several familree classifier is extensible
to shapes other than those we have chosen here — supeegligs be classified too, for
example. We restricted ourselves to simple shapes basdteq@rdécedent of early 20th
century art.

The descriptions in images that come from our classifier baes put to use in both
discriminative tasks (matching) and generative taskstf®gis). Both applications offer
novelty and both could find use elsewhere, so are utilitadan\We conclude that a shape
based image description offers a level of abstraction that Value to computer vision.
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