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Abstract

This paper is about shape fitting to regions that segment an image and some
applications that rely on the abstraction that offers. The novelty lies in three
areas: (1) we fit a shape drawn from a selection of shape families, not just
one class of shape, using a supervised classifier; (2) We use results from
the classifier to match photographs and artwork of particular objects using a
few qualitative shapes, which overcomes the significant differences between
photographs and paintings; (3) We further use the shape classifier to process
photographs into abstract synthetic art which, so far as we know, is novel too.
Thus we use our shape classier in both discriminative (matching) and gener-
ative (image synthesis) tasks. We conclude the level of abstraction offered by
our shape classifier is novel and useful.

1 Introduction and Background

We wish to be able to describe any image using a collection of known shapes, specif-
ically: ellipses, rectangles, triangles and convex hull when none of the others fit well.
Fitting these shapes to image segments generates a description which offers a high level
of abstraction which can be used in many applications. Thereis a precedent for choosing
just these few simple shapes: both individual artists and Schools of Art in the early 20th
century advocated the use of these shapes as basic constructs for painting. The artists
found these shapes sufficient to model the visual world, producing both figurative and ab-
stract painting. This providesprima facie evidence that these shapes make a powerful but
simple descriptive set. We suggest they are useful too in Computer Vision, and provide
two applications in support of this claim. One is processingphotographs into abstract
artwork, of possible value to the entertainment industry. The other is image matching. In
particular we are able to match photographs to artwork, which could be of possible value
in, say, content based retrieval applications.

In overview, our approach is as follows. First we segment an image, using N-cuts [4],
chosen for its simplicity. The choice of segmentor is not important for shape fitting.
Indeed, the shape fitter should operate independently of thesegmentor. Second we op-
timally fit known shapes to each segment, and also robustly fita convex hull [13]. The
description is now ready for use in applications.

The shape fitting literature is large, so here we mention justa few examples. Shape fit-
ting is usually restricted to a single shape model. For instance, circle fitting has been used
for locating lunar craters [15] and soccer balls [18], ellipse fitting for face detection [20]
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and the analysis of potatoes [23], superellipses for mines [5], rectangles for buildings [10],
regular polygons for road signs [3]. But our task is to choosefrom amongst several shape
families.

Fitting multiple shape models and then selecting the most appropriate is less common,
and several problems arise. The first is that it is often convenient to fit different types of
models using different error measures, which if they are notcomparable cannot be used
together as the basis of model selection. Second, the fittingerrors from models of differ-
ent complexity cannot be directly compared since the higherorder models can always be
expected to have a lower error of fit. Many schemes have been proposed to overcome this
problem, one of the earliest being Akaike’s information criterion (AIC) [1]. They operate
by providing a measure that in addition to the fitting error combines and penalises the
complexity of the model. For instance, AIC is defined as−2log(likelihood)+ 2k where
k is the number of parameters in the model. However, due to the different assumptions
made by the various criteria regarding the distribution of the data, the different measures
can give quite different results. For instance, Schwarz’s Bayesian information criterion
(BIC) [17], which is similar to the Minimum Description Length (MDL) criterion, pe-
nalises free parameters more strongly than AIC. Another criterion, the “geometric infor-
mation criterion” was introduced by Torr [21], later the “geometric AIC” was suggested
Kanatani [9]; both specifically designed for computer vision applications. Gheissari and
Bab-Hadiashar [7] provide a review of such methods.

It is clear there is no single agreed way to fit some shape from more than one family.
Issues of concern in the mathematical and computer vision literature are the robustness
of the fit with respect to outlying data points, and the invariance of the fit under trans-
formations of the data. The most common types of fitting in computer vision minimise
some function (e.g. sum of squares) of the residuals. We notethat measures are usually
chosen for their mathematical tractability and computational convenience and complex-
ity, rather than how well they correspond to perceptual or aesthetic judgements. Yet if
we are to match photographs to human-made artwork, and to process a photograph into
a synthetic artwork these value judgements are crucial. We have therefore opted to use a
classifier which is trained under human supervision, in the hope to retain some degree of
subjectivity..

Next is Section 2, which describes how we fit shapes from each of the families we
have chosen, and also how to choose amongst these classes; some performance data for
the classifier is given. In Section 3, we provide details of two applications: matching
photographs to artwork, and automatically processing photographs into artwork. Finally
we conclude the paper in Section 4 by observing that since ourmatcher operates well, and
our synthetic art is of high aesthetic value, that our shape fitter is fit for purpose.

2 Method

We now describe how to fit a simple shape to an image region. Ouraccount follows
the order of our algorithm: first optimally fit several shapes, one from each of several
classes; second choose amongst the optimally fitted shapes.It is the second step which is
of the greater interest to this paper, since that is where novelty lies. The choice is made
with a classifier, so this section concludes with some performance data to characterise the
classifier.



2.1 Fitting Shapes of a Single Type

We fit four categories of shape. Three of them we call “known” because they can be
qualitatively labelled: ellipse, triangle, and rectangle.

Voss and Süße described a powerful method for fitting a variety of geometric primi-
tives by the method of moments [22]. The data is first normalised by applying an appro-
priate transformation to put it into a canonical frame. The fitted geometric primitive is
then simply obtained by taking the geometric primitive in the canonical frame and apply-
ing the inverse transformation to it. For instance, for an ellipse they take the unit circle
as the canonical form, and apply an affine transformation consisting of a translation to set
the momentsm10 = m01 = 0 and an anisotropic scaling such thatm20 = m02 = 1. We have
applied this approach to fit ellipses, rectangles and triangles.

The convex hull is an attractive symbolic representation ofa shape on two counts.
It is generally more compact (using only a subset of the original polygonal vertices),
and also perceptually simpler since all indentations have been removed. However it has
two limitations: it is insensitive to the size and shape of all indentations, and is also too
sensitive to protrusions. To overcome these problems Rosinand Mumford [13] suggested
a “robust” version of the convex hull, which is the convex polygon that maximises the area
overlap with the input polygon. To compute the robust convexhull they used a genetic
algorithm.

2.2 Selecting One Shape From Many

We are now able to optimally fit a collection of simple shapes to each region within a
segmented image. The problem now is how to choose amongst them. Interaction is one
approach, but not only is this tedious for the user but, we argue, is less interesting than
considering automatic choice. Others have approached automatic selection through an
information theoretic measure of some kind; Gheissari and Bab-Hadiashar [7] provide
a review and an empirical comparison of these. As we have already observed, these
measures are chosen for their mathematical tractability and computational convenience.
But just as RMS between a decompressed image and its originalis known to be a poor
measure of subjective loss in quality, so these measures do not necessarily correspond
well to human judgement of shape. It is reasonable to assert that using shape to match
photographs to artwork, and indeed synthesising artwork from photographs, pre-suppose
some level of human judgement. Therefore, we opted in favourof a trained classifier;
training allows some subjectivity into the process. We now explain our classifier and the
training regime.

Selecting appropriate shape models is done using a supervised classification paradigm.
Specifically, a C4.5 decision tree [12] is learnt from a training set of regions which is then
applied to new unseen data. The basis of a decision tree is that each feature can be used
to make a decision that splits the data into smaller subsets,partitioning feature space into
equivalence classes using axis-parallel hyperplanes. C4.5 builds decision trees by select-
ing the most informative feature (that is not yet consideredin the path from the root) to
split each subset. An entropy measure called normalised Information Gain [12] deter-
mines the effectiveness of each feature.

Regions are described by a feature vector and are manually labelled into shape cate-
gories. These features are the basis for making the decisionregarding which is the most
appropriate model. The feature vector consists of the errors between the region and each



of the fitted shape models. To compute the errors at each data point the shortest distance to
the fitted shape is determined using the distance transform.However, the summed error is
not a sufficient descriptor – it is easy to construct examplesin which the best shape model
(according to aesthetics and perceptual criteria) does nothave a lower summed error. In-
stead the more information distribution of point errors is considered, and summarised by
the following statistics: mean, standard deviation, skew,and kurtosis.

2.3 Performance Data

In this section we provide some performance data by which to judge the classifier. We
restricted ourselves to training with the simple shapes, “Ellipse”, “Rectangle”, “Triangle”,
and (robust) “Convex hull”. The training data came from N-cuts segmentations [4], we
used 35 instances of each known shape to train. To test we usedfurther data, again from
N-cut segmentations, and so produced the confusion matrix in Table 1.

ellipse rectangle triangle convex hull
Ellipse 32 1 1 1
Rectangle 4 29 1 1
Triangle 3 1 30 1
Convex Hull 1 1 1 32

Table 1: The confusion Matrix, scaled by 35 (the number of instances per known class).
Each row (capital letters) shows the result of classifying aground truth set of a known
shape. The fraction of times a ground truth shape class is classified as some nominated
shape class is given. Each ground truth class contained N instances.

A natural question to ask is “how much confidence can one have in the confusion
matrix?”. Related to this is “when can training cease?”. There is a common answer
to these: cease training when the confidence matrix converges to a stable solution, so
that one can have confidence it is “correct”. Figure 1 shows how the maximum absolute
change in any confusion matrix element (normalised by the total number of samples at
each step) depends on the number of training data. It shows wecan cease training after
35 or so training data per shape class.
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Figure 1: The maximum absolute change in any normalised confusion matrix element as
a function of the number of training data in each shape class.



3 Applications

We have used our shape fitter in two applications: painting and matching. That these
ostensibly distinct applications are related should not betoo much of a surprise, since
for a painting to be understood as representing some real world object one must be able
to construct a mapping between them. Here we show we can synthesis art work from a
photograph, and also match photographs to artwork. Taken together, these applications
provide strong evidence of the utilitarian value of describing images using simple shapes.

3.1 Matching Photographs with Artwork

Our first application is matching photographs with artwork.This is of interest in further
applications, such a content based retrieval. The problem with matching in this case is that
the “character” of the two images can differ significantly. Paintings can comprise large
regions of flat colour, photographs usually have far more detail in them than is necessary
to convey the content, including complex light effects, textures and so on.

This problem has been sparsely addressed in the literature.Schechtman and Irani [16]
assert that any textures can match, provided the are self-consistent. Baiet al. argue that
structure is a class invariant [2]. Fidler and Leonardis learn tree structures premised upon
Gabor filter responses [6] and use that tree to identify many specific objects classes; some
supervised training is required at the higher levels of the tree. We continue the theme of
abstract invariance by using qualitative shape as a matching primitive. This has the added
advantage of allowing us to generate as well as classify, as the next application makes
clear.

Our matcher accepts two images as input and returns a list of matched regions. The
regions are produced by the N-cut segmentor [4]. This segmentor requires a single num-
ber,N, as input, and segments an image into that many segments. We use several values
of N, specificallyN = 3i, for i ∈ [1,8] to obtain 8 “levels”, each of finer granularity than
the last. The nodes on the different levels generate a natural hierarchy — a tree — based
on overlap.

Given two images we manually select a particular level from just one of them. This
level is selected to give an acceptable segmentation of the foreground object of interest.
This is reasonable, given the complete lack of prior information about what constitutes a
semantic object. Our selections could be input to yet another classifier, which might then
act in the manner of Fidler and Leonardis [6], but that is future work. This foreground ob-
ject then acts as a query image. The matcher is to locate this object in the tree representing
the second image.

The problem now is to find matches between two subtrees (actually, two forests), each
of which corresponds to a foreground object in an image. Eachnode has a shape fitted
to it, using the classifier, so also has a label which is an element of Z = {E,R,T,C},
corresponding to the four classes of training shape. The fact we use qualitative shapes
means we wish to match through the shape labels that the classifier assigns. These we
will call “observed” labels. The real, underlying shape label for a region is unknown to
us — because the classifier may have assigned an incorrect label.

The rationale for using observed shape labels is that is provides a quick and easy way
to match, and is naturally invariant to many geometric transforms, to clutter, and noise:
matching photographs to artwork makes all of these demands.We used N-cut segments to



train, because we intended to use N-cuts to segment and match. Although we have opted
to use qualitative data we nonetheless benefit from the a measure of the probability that
two symbollic shapes match. We will estimate the probability that two observed. labels
a and b, say correspond to the same underlying shape, the identity of which is never
revealed. The confusion matrix in Table 1 plays a central role in this estimate.

Each row of the table gives the conditional probabilityp(a|Z), which is the probability
that a knownnamed shapeZ which is input to the classifier is assigned theobserved label
a. For example,p(e|T ) is the probability that a triangle is classified as an ellipse, e. We
will continue to use upper case letters for known inputs to the classifier, and lower case
for the labels it produces. Each row of the confusion matrix has constant names shapeZ,
each column has constant observed classa. Using Bayes’ law we get the probability that
a given observationa is really a named shapeZ.

p(Z|a) =
p(a|Z)p(Z)

p(a)
(1)

We know for sure that all named shapes exist atleast once we assumep(Z) = c for all
Z ∈ Z . The probability of observing the labela requires us to marginalise over the
named shapes:

p(a) = ∑
Z∈Z

p(a|Z) (2)

Now suppose we have two shapes with observed classes (i.e. a name given by the clas-
sifier) a andb. The probability that these are both of the the same named shape Z is
p(Z|a,b). By appeal to conditional independence (and assuming statistical independence
on the observations) we get

p(Z|a,b) = p(Z|a)p(Z|b) (3)

The probability that the observed shapesa and b are the same underlying (but never
revealed to us) shape is therefore

p(a,b) = ∑
Z∈Z

p(Z|a,b) (4)

So p(a,b) is a table entry that estimates the probability that two observed labels corre-
spond to a named shape, matching in a qualitative sense.

Figure 2: Parts of a drawn car and parts of a photographic of a car are matched, as shown
by the colour coded regions.



Figure 3: Parts of a flower are matched, as shown by colour coded regions.

Figure 4: A painting and a portrait are matched, as shown by colour coded regions.

The probability tablep(a,b) is used to weight all matches between the regions in the
two trees (forests). At the top-most level (the largest, coarsest regions) we consider all
putative pairs of matches. We do likewise at the next level down, which expands each
of the matched pairs. Recursive application generates a match-tree of all possible pair
combinations. Match-tree branches are pruned where both children are not connected to
both parents; ie. if (a,b) is a parent to (c,d) and (a,c) are connected in image one, then
(b,d) must be connected in image two. We seek the path of maximal probability in this
tree. A path comprises a string,S of matched pairs, each region appears at most once in
such a string. The probability of the path is thenp(S ) = Π(a,b)∈S p(a,b). Since paths

can be of different lengths we normalise to take the geometric average, sop(S )(1/|S |).
This is equivalent to a “characteristic” radius of a|S | dimensional hyper-ellipse whose
main axis radii are the probabilities along the path.

Results from some of our matched photograph/paintingpairsare shown in Figures 2, 3,
and 4. The matcher has successfully matched corresponding regions in these images,
even where colour and and other properties differ significantly. It has not succeeded in
matching as well as would wish. At the moment our explanationlies with the N-cut seg-
mentor, because it can be unreliable. Despite this, these results indicate that qualitative
shape can be used to as the basis of a matcher. Beside matchingacross photographs and



artwork, a qualitative matcher such as ours might be used to initialise a more complex,
quantitative matcher. Or, the same matcher as ours might be adapted to include measure-
ment data: e.g. how similar is a region to each of the shape classes; or the convex hull
could be used as a kind of “wild card” on the grounds that something classified as that
could in principle be just about any shape.

The point of this matcher, though, was to explore the possibility of using nothing but
qualitative data. Our results show that even such weak measures can prove useful.

3.2 Synthetic Abstract Art from Photographs

In our second application, we use the shapes fitted by the sameclassifier as used by the
matcher to create synthetic artworks of an abstract nature.Specially, the types of abstract
artworks we produce are largely motivated by artists such asKandinsky and late Matisse,
who used pure geometric shapes as primitives to create art. Two representative artworks
are “Several Circles, 1926” by Kandinsky, where objects arerepresented as a collection
of circles and “The Snail, 1952-53” by Matisse, where he useda collection of paper cut-
outs to create a snail. For copyright reasons, examples of such artworks can not be shown
here, but can be readily found on-line. Our classifier allowsthe synthetic art to be created
which is more abstract in nature than is typical — most of the literature concentrates on
making marks [8, 14] rather than producing abstraction, although the field is moving in
that direction [11].

We start by segmenting the image into different granularities using the same segmen-
tor used in the matcher, except that only two levels of granularity are sufficient in this
application. Specifying these two levels is the only user interaction we require, and these
two remain valid for many images, typicallyN = 50 for fine detail, and andN = 5 for
coarse background, are input to N-cuts [4]. So, in many casesthe user just needs to
specify which image is to be processed.

The finer segments are rendered on top of the coarser ones, butonly after filtering out
some of the detailed shapes; otherwise too much detail is shown. To filter non-salient
detail we use colour differencing. The colour of the fine segment is compared to that
of the coarse segment it overlays. Colour differences are measured in terms of just no-
ticeable difference (jnd) in CIELAB colour space. For instance, colours,(L1,a1,b1) and
(L2,a2,b2), have colour difference∆E12 as follows

∆E12 =

√

(L1−L2)
2 +(a1−a2)

2 +(b1−b2)
2

jnd
(5)

where jnd ≈ 2.3 in CIELAB colour space [19]. By thresholding∆E we can control the
level of detail to render on the top layer; increasing the threshold results in less shapes
being rendered and vice versa. A constant∆E value of 5 is used to make all rendering in
this paper.

Order matters rendering shapes into a frame-buffer, because shapes fitted to regions at
a singleN often overlap. We tackled this problem by introducing a shape fitting errorτ.
Given a shape modelS and its corresponding regionR. τ is defined as the following ratio,
|S

⋂

R)|/|S
⋃

R)|, which is a form of Tanimoto similarity score, calculated ona per pixel
basis. Shapes with large fitting errors are rendered before those with smaller errors. To
create an embossed look, to the paper cuts we counted the number of shapes lying over



each pixel; the resulting height field became a bump map. To create transparent paper we
simply used “alpha” colour channel. Figures 5 and 6 show somesample output.

Figure 5: Left, the photograph car in Figure 2 has been rendered as paper cut-outs, which
show the shape fitted to each region. Right, a photograph of a flower is rendered, this time
as transparent shapes.

Figure 6: Left, an original photograph, right an abstraction in shapes. This shows that
simple shapes are sufficient to capture the essence of a complicated image: the lack of
detail can be advantageous and even desirable.

4 Discussion and Conclusion

This paper provides a novel method to fit not just a single shape to a region, but a way to
classify a region as some shape from amongst several families. The classifier is extensible
to shapes other than those we have chosen here — super-ellipses can be classified too, for
example. We restricted ourselves to simple shapes based on the precedent of early 20th
century art.

The descriptions in images that come from our classifier havebeen put to use in both
discriminative tasks (matching) and generative tasks (synthesis). Both applications offer
novelty and both could find use elsewhere, so are utilitariantoo. We conclude that a shape
based image description offers a level of abstraction that is of value to computer vision.
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