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Abstract

New techniques for more accurate unsupervised segmentation of lung tis-
sues from Low Dose Computed Tomography (LDCT) are proposed. In this
paper we describe LDCT images and desired maps of regions (lung and the
other chest tissues) by a joint Markov-Gibbs random field model (MGRF)
of independent image signals and interdependent region labels but focus on
most accurate model identification. To better specify region borders, each
empirical distribution of signals is precisely approximated by a Linear Com-
bination of Discrete Gaussians (LCDG) with positive and negative compo-
nents. We modify a conventional Expectation-Maximization (EM) algorithm
to deal with the LCDG and develop a sequential EM-based technique to get
an initial LCDG-approximation for the modified EM algorithm. The initial
segmentation based on the LCDG-models is then iteratively refined using a
MGRF model with analytically estimated potentials. Experiments on real
data sets confirm high accuracy of the proposed approach.

1 Introduction

Lung Cancer remains the leading cause of cancer-related deaths in the US. In 2006, there
were approximately 174,470 new cases of lung cancer and 162,460 related deaths [1].
Early diagnosis of cancer can improve the effectiveness of treatment and increase the
patient’s chance of survival. Segmentation of the lung tissues is a crucial step for early
detection and diagnosis of lung nodules. Accurate segmentation of lung tissues from
LDCT images is a challenging problem because some lung tissues such as arteries, veins,
bronchi, and bronchioles are very close to the chest tissues. Therefore, the segmentation
cannot be based only on image signals but have to account also for spatial relationships
between the region labels in order to preserve the details of the lung region.
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Figure 1: Illustration of joint Markov-Gibbs model of LDCT lung images.

In the literature, there are many techniques developed for lung segmentation in CT im-
ages. Sluimer et al. [2] presented a survey on computer analysis of the lungs in CT scans.
This survey addressed segmentation of various pulmonary structures, registration of chest
scans, and their applications. Hu et al. [3], proposed an optimal gray level thresholding
technique which is used to select a threshold value based on the unique characteristics of
the data set. A segmentation-by-registration scheme was proposed by Sluimer et al. [4] for
automated segmentation of the pathological lung in CT. For more on lung segmentation
techniques, refer, e.g., to the survey by Sluimer et al. [2].

In this paper we describe LDCT images and desired maps of regions by a joint
Markov-Gibbs random field model (MGRF) of independent image signals and interde-
pendent region labels but focus on most accurate model identification. To better specify
region borders, each empirical distribution of signals is precisely approximated by a Lin-
ear Combination of Discrete Gaussians (LCDG) with positive and negative components.
Approximation of an empirical relative frequency distribution of scalar data with a partic-
ular probability density function is widely used in pattern recognition and image process-
ing, e.g., for data clustering or image segmentation [5]. The basic problem is to accurately
approximate, within the data range, not only the peaks, or modes of the probability density
function for the measurements but also its behavior between the peaks.

2 Joint Markov-Gibbs model of LDCT lung images

Let R = {(i, j,z) : 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ z ≤ Z} denote a finite arithmetic grid sup-
porting grayscale LDCT images g : R → Q and their region maps m : R → X. Here,
Q = {0, . . . ,Q− 1} and X = {1, . . . ,X} are the sets of gray levels and region labels, re-
spectively, where Q is the number of gray levels and X is the number of image classes to
separate by segmentation.

The MGRF model of images to segment is given by a joint probability distribution of
LDCT images and desired region maps P(g,m) = P(m)P(g|m). Here, P(m) is an uncon-
ditional distribution of maps and P(g|m) is a conditional distribution of images, given a
map. The Bayesian MAP estimate of the map, given the image g, m∗ = argmaxm L(g,m)



maximizes the log-likelihood function:

L(g,m) = logP(g|m)+ logP(m) (1)

In this work we focus on accurate identification of the spatial interaction between the
lung voxels (P(m)) and the intensity distribution for the lung tissues (P(g|m)) as shown
in Fig. 1.

2.1 Spatial interaction model of LDCT images

Generic Markov-Gibbs model of region maps [6] that accounts for only pairwise inter-
actions between each region label and its neighbors has generally an arbitrary interaction
structure and arbitrary Gibbs potentials identified from image data. For simplicity, we re-
strict the interactions to the nearest voxels (26-neighborhood) and assume, by symmetry
considerations, that the interactions are independent of relative region orientation, are the
same for all classes, and depend only on intra- or inter-region position of each voxel pair
(i.e. whether the labels are equal or not). Under these restrictions, the model is similar
to the conventional auto-binomial ones [6] and differs only in that the potentials are not
related to a predefined function and have analytical estimates.

The symmetric label interactions are three-fold: the closest horizontal-vertical-diagonal
in the current slice (hvdc), the closest horizontal-vertical-diagonal in the upper slice (hvdu),
and the closest horizontal-vertical-diagonal in the lower slice (hvdl). The potentials of
each type are bi-valued because only coincidence or difference of the labels are taken into
account. Let Va =

{
Va(x,χ) = Va,eq if x = χ and Va(x,χ) = Va,ne if x �= χ: x,χ ∈ X}

denote bi-valued Gibbs potentials describing symmetric pairwise interactions of type a ∈
A = {hvdc,hvdu,hvdl} between the region labels. Let Nhvdc = {(1,0,0),(0,1,0),(−1,0,0),
(0,−1,0)}, Nhvdu = {(0,0,1),(−1,−1,1),(−1,1,1),(1,−1,1),(1,1,1)}, and Nhvdl = {(0,
0,−1),(−1,−1,−1),(−1,1,−1),(1,−1,−1),(1,1,−1) be subsets of inter-voxel offsets
for the 26-neighborhood system. Then the Gibbs probability distribution of region maps
is as follows:

P(m) ∝ exp

(
∑

(i, j,z)∈R
∑

a∈A
∑

(ξ ,η ,ζ )∈Na

Va(mi, j,z,mi+ξ , j+η ,z+ζ )

)
(2)

To identify the MGRF model described in Eq. (2), we have to estimate the Gibbs
Potentials V. In this paper we introduce a new analytical maximum likelihood estimation
for the Gibbs potentials1.

Va,eq =
X2

X −1

(
f ′a(m)− 1

X

)
and Va,ne =

X2

X −1

(
f ′′a (m)−1+

1
X

)
(3)

where f ′a(m) and f ′′a (m) denote the relative frequency of the equal and non-equal pairs of
the labels in all the equivalent voxel pairs {((i, j,z),(i + ξ , j + η ,z + ζ )) : (i, j,z) ∈ R.;
(i+ξ , j +η ,z+ζ ) ∈ R; (ξ ,η ,ζ ) ∈ Na}, respectively.

1The proof is provided on our web site: http://uofl.edu/speed/bioengineering/faculty/bioengineering-full/dr-
ayman-el-baz/elbazlab.html.



2.2 Intensity model of LDCT lung images

Let q; q ∈ Q = {0,1, . . . ,Q− 1}, denote the Q-ary gray level. The discrete Gaussian is
defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q such that ψ(q|θ) =
Φθ (q + 0.5)−Φθ (q− 0.5) for q = 1, . . . ,Q− 2, ψ(0|θ) = Φθ (0.5), ψ(Q− 1|θ) = 1−
Φθ (Q−1.5) where Φθ (q) is the cumulative Gaussian function with a shorthand notation
θ = (µ ,σ2) for its mean, µ , and variance, σ2.

We assume the number K of dominant modes, i.e. regions, objects, or classes of
interest in a given LDCT images, is already known. In contrast to a conventional mixture
of Gaussians and/or other simple distributions, one per region, we closely approximate
the empirical gray level distribution for LDCT images with an LCDG having Cp positive
and Cn negative components such that Cp ≥ K:

pw,θ (q) =
Cp

∑
r=1

wp,rψ(q|θp,r)−
Cn

∑
l=1

wn,lψ(q|θn,l) (4)

under the obvious restrictions on the weights w = [wp,.,wn,.]: all the weights are non-
negative and

Cp

∑
r=1

wp,r −
Cn

∑
l=1

wn,l = 1 (5)

To identify the LCDG-model including the numbers of its positive and negative compo-
nents, we modify the EM algorithm to deal with the LCDG.

First, the numbers Cp −K, Cn and parameters w, θ (weights, means, and variances)
of the positive and negative DG components are estimated with a sequential EM-based
initializing algorithm. The goal is to produce a close initial LCDG-approximation of the
empirical distribution. Then under the fixed Cp and Cn, all other model parameters are
refined with an EM algorithm that modifies the conventional one in [7] to account for the
components with alternating signs.

2.2.1 Sequential EM-based initialization:

Sequential EM-based initialization forms an LCDG-approximation of a given empirical
marginal gray level distribution using the conventional EM-algorithm [7] adapted to the
DGs. At the first stage, the empirical distribution is represented with a mixture of K
positive DGs, each dominant mode being roughly approximated with a single DG. At the
second stage, deviations of the empirical distribution from the dominant K-component
mixture are modeled with other, “subordinate” components of the LCDG. The resulting
initial LCDG has K dominant weights, say, wp,1, . . . , wp,K such that ∑K

r=1 wp,r = 1, and a

number of subordinate weights of smaller values such that ∑
Cp
r=K+1 wp,r −∑Cn

l=1 wn,l = 0.
The subordinate components are determined as follows. The positive and negative de-

viations of the empirical distribution from the dominant mixture are separated and scaled
up to form two new “empirical distributions”. The same conventional EM algorithm is
iteratively exploited to find the subordinate mixtures of positive or negative DGs that
approximate best the scaled-up positive or negative deviations, respectively. The sizes
Cp −K and Cn of these mixtures are found by sequential minimization of the total abso-
lute error between each scaled-up deviation and its mixture model by the number of the
components. Then the obtained positive and negative subordinate models are scaled down
and then added to the dominant mixture yielding the initial LCDG model.



2.2.2 Modified EM algorithm for LCDG:

Modified EM algorithm for LCDG maximizes the log-likelihood of the empirical data by
the model parameters assuming statistically independent signals:

L(w,θ) = ∑
q∈Q

f (q) log pw,θ (q) (6)

A local maximum of the log-likelihood in Eq. (6) is given with the EM process extending

the one in [7] onto alternating signs of the components. Let p[m]
w,θ (q)= ∑

Cp
r=1 w[m]

p,r ψ(q|θ [m]
p,r )−

∑Cn
l=1 w[m]

n,l ψ(q|θ [m]
n,l ) denote the current LCDG at iteration m. Relative contributions of each

signal q∈Q to each positive and negative DG at iteration m are specified by the respective
conditional weights

π [m]
p (r|q) =

w[m]
p,r ψ(q|θ [m]

p,r )

p[m]
w,θ (q)

; π [m]
n (l|q) =

w[m]
n,l ψ(q|θ [m]

n,l )

p[m]
w,θ (q)

(7)

such that the following constraints hold:

Cp

∑
r=1

π [m]
p (r|q)−

Cn

∑
l=1

π [m]
n (l|q) = 1; q = 0, . . . ,Q−1 (8)

The following two steps iterate until the log-likelihood changes become small:

E– step[m+1]: Find the weights of Eq. (7) under the fixed parameters w[m], θ [m] from
the previous iteration m, and

M– step[m+1]: Find conditional MLEs w[m+1], θ [m+1] by maximizing L(w,θ) under the
fixed weights of Eq. (7).

Considerations closely similar to those in [7] show this process converges to a local log-
likelihood maximum. Let the log-likelihood of Eq. (6) be rewritten in the equivalent form
with the constraints of Eq. (8) as unit factors:

L(w[m],θ [m]) =
Q

∑
q=0

f (q)

[
Cp

∑
r=1

π [m]
p (r|q) log p[m](q)−

Cn

∑
l=1

π [m]
n (l|q) log p[m](q)

]
(9)

Let the terms log p[m](q) in the first and second brackets be replaced with the equal

terms logw[m]
p,r + logψ(q|θ [m]

p,r )− logπ [m]
p (r|q) and logw[m]

n,l + logψ(q|θ [m]
n,l )− logπ [m]

n (l|q),
respectively, which follow from Eq. (7). At the E-step, the conditional Lagrange maxi-
mization of the log-likelihood of Eq. (9) under the Q restrictions of Eq. (8) results just in

the weights π [m+1]
p (r|q) and π [m+1]

n (l|q) of Eq. (7) for all r = 1, . . . ,Cp; l = 1, . . . ,Cn and

q ∈ Q. At the M-step, the DG weights w[m+1]
p,r = ∑q∈Q f (q)π [m+1]

p (r|q) and w[m+1]
n,l =

∑q∈Q f (q)π [m+1]
n (l|q) follow from the conditional Lagrange maximization of the log-

likelihood in Eq. (9) under the restriction of Eq. (5) and the fixed conditional weights
of Eq. (7). Under these latter, the conventional MLEs of the parameters of each DG stem



from maximizing the log-likelihood after each difference of the cumulative Gaussians is
replaced with its close approximation with the Gaussian density (below “c” stands for “p”
or “n”, respectively):

µ [m+1]
c,r = 1

w[m+1]
c,r

∑
q∈Q

q · f (q)π [m+1]
c (r|q)

(σ [m+1]
c,r )2 = 1

w[m+1]
c,r

∑
q∈Q

(
q−µ [m+1]

c,i

)2 · f (q)π [m+1]
c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive. The itera-
tions should be terminated when the log-likelihood of Eq. (6) does not change or begins
to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into the K LCDG-submodels P[k] =
[p(q|k) : q ∈ Q], one per class k = 1, . . . ,K, by associating the subordinate DGs with the
dominant terms so that the misclassification rate is minimal.
The whole iterative segmentation process is as follows:

◦ Initialization: Find an initial map by the voxelwise Bayesian MAP classification
of a given LDCT image after initial estimation of X LCDG-models of signals of
each object class represented by one of the dominant modes.

◦ Iterative refinement: Refine the initial map by iterating these two steps:

1. Estimate the potential values for region map model using Eq. (3).

2. Re-collect the empirical gray level densities for the current regions, re-approximate
these densities, and update the map.
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Figure 2: Typical LDCT scan slice (a) and the empirical distribution f (q) and the esti-
mated dominant 2-component mixture p2(q) (b).

3 Experimental Results and Validation

Experiments were conducted with the Low Dose Computed Tomography (LDCT) images
acquired with a multidetector GE Light Speed Plus scanner (General Electric, Milwua-
kee, USA) with the following scanning parameters: slice thickness of 2.5 mm recon-
structed every 1.5 mm, scanning pitch 1.5, 140 KV, 100 MA, and F.O.V 36 cm. The
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Figure 3: Deviations and absolute deviations between f (q) and p3(q) (a), the mixture
model (b) of the absolute deviations in (a), the absolute error (c) as a function of the num-
ber of Gaussians approximating the scaled-up absolute deviations in (a), and the initial
estimated LCDG-models for each class (d).
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Figure 4: Final 2-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) the LCDG model components (c), and the estimated density for
each class using LCDG-models (d).

size of each 3D data set is 512 × 512 × 182. The LDCT images contain two classes
(K = 2), namely, darker lung tissues and brighter chest region. A typical LDCT slice,
its empirical marginal gray level distribution f (q), and the initial 2-component Gaus-
sian dominant mixture p2(q) are shown in Fig. 2. Figure 3 illustrates basic stages of
our sequential EM-based initialization by showing the scaled-up alternating and absolute
deviations f (q)− p2(q), the best mixture model estimated for the absolute deviations
(these ten Gaussian components give the minimum approximation error), and the initial
LCDG-models for each class. Figure 4 presents the final estimated LCDG-model using
the proposed modified EM-algorithm. The final LCDG of each class are obtained with
the best separation threshold t = 109 as shown in Fig 4(d).

The region map obtained first with only the class LCDG-models is further refined us-
ing the iterative segmentation algorithm. Changes in the likelihood L(g,m) become very
small after 12 iterations. For this map the initial estimated parameters are Va,eq =−Va,ne =
1.02, and the final estimated parameters are Va,eq = −Va,ne = 1.67. The final region map
produced with these parameters using the Metropolis voxelwise relaxation is shown in
Fig. 5. For comparison, Fig. 5 presents also the initial region map, the map refined with
the randomly selected potentials, segmentation obtained by MRS algorithm [8], segmen-
tation obtained by ICM algorithm [9], and the “ground truth” segmentation done by a
radiologist. More 3D segmentation results are shown in Fig. 6. In order to better measure
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Figure 5: Initial (a) and final (b) segmentation by the proposed approach (the final error
1.1% comparing to the ground truth); initial (c) and final (d) segmentation using the con-
ventional normal mixture obtained by the EM algorithm (the final error 5.1%); refined
lung regions (e) obtained from (a) using the randomly chosen Gibbs potentials of the map
model (the final error 1.8%); (f) best segmentation obtained by the MRS algorithm with
the potential values 0.3 and three level of resolution (error 2.3%); (g) best segmentation
obtained by the ICM algorithm with the potential values 0.3 (error 2.9%), and the ground
truth (h) produced by a radiologist.

the accuracy of our approach, we have created a geometric phantom with the same gray
level distribution in regions as in the CT slices at hand. The phantom, its ideal region
map, and results of our segmentation are shown in Fig. 7. The error 0.09% between the
found regions and ground truth confirms the high accuracy of the proposed segmenta-
tion techniques. For comparison, Fig. 7 shows also the segmentation obtained with the
iterative thresholding (IT) approach, the ICM algorithm [9], the MRS algorithm [8], the
deformable model which uses the tractional gradient-based external force [10], and the
more advanced deformable model using the GVF [11].

The above experiments, as well as additional experiments with 1820 different bi-
modal LDCT slices, have shown that our segmentation yields much better results than
several more conventional algorithms. As indicated in Table 1, the most accurate algo-
rithm among these latter algorithms, namely, the MRS [8], has the larger error range of
1.9 – 9.8% the mean error of 5.1% with respect to the ground truth. Our segmentation has
the notably smaller error range of 0.1 – 2.15% and its mean error of 0.32% is more than
fifteen times less.

4 Conclusions

Our experiments show that the proposed accurate identification of the Markov–Gibbs
random field model demonstrates promising results in segmenting the lung region from
LDCT images. The main difference with respect to more conventional schemes is in the
use of precise LCDG-models to approximate signal distributions and analytical estimates
of the MGRF parameters. The proposed segmentation techniques include (i) the accurate
sequential initialization to form a starting LCDG-model, (ii) the modified EM algorithm
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Figure 6: Results of 3D Lung segmentation projected onto 2D axial (A), coronal (C),
and saggital (S) planes for visualization: 2D profiles of the original LDCT images (a),
our segmentation (b), IT segmentation, and (d) the radiologist’s segmentation. Note that
our segmentation errors are only around the outer edge (Error 0.79%. and the IT-based
segmentation error is 4.57%. The errors are highlighted by yellow color.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Generated phantom (a), its lung regions segmented with our approach (b; the
error 0.09%), the IT approach (c; the error 5.97%), the ICM algorithm (d; the least error
2.91% obtained with the potential values 0.3); the MRS algorithm (e; the error 1.98%
with the potential values 0.3 and three resolution levels), the deformable model using the
traditional image gradient as an external force (f; the error 59.4%), the deformable model
with the gradient vector field as an external force (g; the error 51.9%), and the ground
truth (h).

for refining the starting model, and (iii) the iterative map refinement using the identified
conditional MGRF model. Our present implementation on C++ programming language



Table 1: Accuracy of our segmentation in comparison to five algorithms (IT, MRS [8],
ICM [9], the gradient-based deformable model DMG [10], and the deformable model
based on the gradient vector flow GVF [11]).

Error, % Segmentation algorithm
Our IT MRS ICM DMG GVF

Minimum 0.1 2.81 1.90 2.03 10.1 4.10
Maximum 2.15 21.9 9.80 17.1 29.1 18.2
Mean 0.32 10.9 5.10 9.80 15.1 13.2
St.dev. 0.71 6.04 3.31 5.11 7.77 4.81
Significance less than 10−4 10−3 10−4 10−4 10−4

on the Intel quad processor (3.2GHz each) with 16 GB memory and 2 TB hard drive with
RAID technology takes about 296 sec for processing 182 LDCT slices of size 512×512
pixels each, i.e about 1.65 sec per slice.

Acknowledgement: This research work has been supported by Wallace H. Coulter Foun-
dation.
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