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Abstract

This paper presents a novel method for detection of image interest regions
called Structure Guided Salient Regions (SGSR). Following the information
theoretic route to saliency detection, we extend Kadir et al.’s Salient Region
detector by exploiting image structure information. The detected SGSRs are
highly distinct and very selective. For planar scenes, their performance on
repeatability tests under viewpoint changes is comparable to the state of the
art. For 3D scenes, SGSRs are more likely to be repeatably detected under
viewpoint change. Their usefulness for wide baseline matching is demon-
strated with a real-world example, where their comparative advantages are
shown.

1 Introduction
Under wide baseline conditions, two stereo images of the same scene will differ sig-
nificantly due to occlusion, geometric distortion, and other effects such as illumination
change. Local features are the main source of information for establishing image cor-
respondence. Many efforts have been put into finding the local image features that are
most likely to be repeatably detected under viewpoint and possibly illumination changes
[7, 1, 13, 12, 9, 14, 2, 10, 6].

Many researchers have used corner and edge information to extract features that are
likely to be repeatably detected despite viewpoint and scale changes [13, 12, 14, 15].
Some other works find repeatably detectable scene structures based on image intensity,
such as the intensity extrema-based region detector [13, 12] and the intensity induced
maximally stable extremal region (MSER) [9]. Line segments are used by Bay et al. [2]
to obtain the planar homography, which in turn facilitates epipolar geometry estimation.
A convincing attempt to use repetitive patterns as features was made by Chetverikov et
al. [3].

Following the seminal work of Lindeberg [7], a family of affine covariant feature de-
tectors was proposed [7, 1, 10]. They typically start by detecting interest points across
different scales as candidates. Then each of the candidates is further examined with re-
gard to its scale invariance while simultaneously refining its affine parameters (by affine
normalization). The second moment matrix of the intensity gradient is used to find the
neighborhood structure of each feature. Combined with the scale selection method, these
approaches can find affine covariant interest regions quite accurately. Lowe’s SIFT de-
tector [8] can repeatably detect features under similarity transforms at their characteristic
scales. A different avenue along information theory is explored by Kadir et al. [6] and
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their entropy-based saliency measure is able to select salient elliptical regions (we call
them Salient Regions) at appropriate scales.

Successful affine covariant detectors can find the same scene structure even though the
images undergo scale, viewpoint and illumination changes. According to the findings of
a recent benchmark [11], MSER and Hessian-Affine detectors perform consistently better
in most of the repeatability and matching score tests. In comparison, Salient Regions have
poor performance in these respects.

Like many other benchmark efforts, for the convenience of obtaining ground truth,
detector comparisons (in [11]) are carried out under simplified circumstances. In the case
of comparing repeatability under viewpoint changes, all images are taken from one planar
scene from different viewing angles1. Affine normalization based detectors need a large
neighborhood region to obtain a feature’s local structure. If the scene structure of an image
feature is indeed locally planar, these methods can detect the same scene structure adapted
to different viewpoints with elegant affine warps. Concentrating on local complexity of
image patches, the Salient Regions detector uses an entropy-based saliency definition.
Since its saliency measure is independent of geometric considerations, regions detected
by this criterion could be applicable to more general scenes.

We follow the route of information theoretic saliency and propose a different salient
region detector called the Structure Guided Salient Region (SGSR) detector. The SGSR
detector makes full use of the local intensity structure and intensity probability distribu-
tion of regions. It will be shown to be advantageous in two respects: (1) repeatability
under viewpoint change using benchmark images provided by Mikolajczyk et al. [11],
and (2) real-world application to wide baseline matching.

The outline of this paper is as follows. After reviewing work by Kadir et al. in
Section 2, we will describe the proposed method in detail in Section 3. Then, Sections 4
and 5 evaluate its performance in the cases of planar scenes and 3D scenes respectively.
Finally, we summarize the conclusions to be drawn in Section 6.

2 Background
Essentially, Salient Regions are regions that locally assume maximal signal complexity
and at the same time exhibit self-dissimilarity in scale space [5]. The signal complexity
is measured by the Shannon entropy (denoted by H) of the local intensity histogram. The
self-dissimilarity is approximated by the change of the probability density function (pdf )
in scale space (denoted by W ).

A region’s scale saliency Y is defined as the product of the two factors H and W , all
of which are functions of scale s and position x. Using p(d,s,x) to describe the region’s
intensity pdf at position x and scale s, we give the mathematical definitions of Y , H, and
W as follows:

Y (s,x) = H(s,x)W (s,x); (1)

H(s,x) =− ∑
d∈D

p(d,s,x)log(p(d,s,x)); (2)

W (s,x) =
s2

2s−1 ∑
d∈D
|p(d,s,x)− p(d,s−1,x)| . (3)

1for example, the graffiti image sets used in the benchmark work [11]



In equations (2) and (3), D is the set of possible intensity values.
The Salient Regions detector was later generalized to be invariant to affine transforms

induced by viewpoint changes [6]. This invariance is achieved by replacing the circular
sampling window (parameterized by scale s) with an ellipse, which is summarized by
the vector {s,r,θ}, where s is the scale, r is the aspect ratio of the major axis versus the
minor axis of the ellipse, and θ is the orientation of the major axis. Brute-force searching
over the three-parameter space can be very expensive. Therefore, Kadir et al. proposed
a seeding and local adaptation approach. They start by finding seed regions conforming
to the original saliency criterion using circular sampling windows. The seed regions are
then locally adapted by searching for optimal s, r and θ values (equivalent to deforming
the seed circles to an ellipse at an optimal scale s), to maximize the regions’ saliency
measure. This local adaptation method greatly improves efficiency.

However, there are a few drawbacks to the above-mentioned method. First, the cir-
cular sampling window used in the seeding procedure may prefer isotropic structure to
anisotropic structure. This bias may contribute to low repeatability scores under view-
point change. Because a change of viewing angle will skew isotropic structures in one
image to anisotropic ones in the other, they do not get equal chance of being detected.
Second, feature locations detected with circular sampling windows will need additional
adjustment to fine-tune the center of the deformed region. This positional refinement
was not conducted in the original work. Nevertheless, the authors’ innovative attempt at
introducing information theory into feature detection is in line with human attention to
features. We believe this saliency measure may capture more of the intrinsic structures in
the scene and is more likely to be repeatably detected under a wide baseline condition.

3 The Structure Guided Salient Region
Based on the theory of entropy-based saliency for identifying features, we propose a dif-
ferent route to salient region detection using seeding with local structure. To be specific,
we propose a two-step detection procedure of seeding and local saliency detection, where
our seeding will take into account local intensity structures of the image.

We will first briefly describe our representation of features in Section 3.1. Then, we
will present the two steps in Sections 3.2 and 3.3 respectively. Lastly, in Section 3.4 we
will introduce our method for robustly estimating the region pdf.

3.1 Representation of the Scale And Affine Invariant Features
We describe a scale and affine invariant feature by fl = {xl ,sl , tl ,vl}, where xl is a 2×1
vector (x0,y0)T , signifying the center of the feature region; sl is a scalar describing the
feature’s scale; and tl indicates the shape of the image region covered by this feature. We

represent tl by a normalized 2×2 symmetric matrix
(

A B
B C

)
, called the structure tensor.

Its symmetry and normalization reduces the two-by-two matrix to two degrees of freedom.
It is equivalent to representing an elliptical shape by aspect ratio and orientation, but the
tensor representation is more convenient to work with in our case. Finally, vl contains the
descriptor values for this feature.

In essence, image feature detection is the estimation of {xl ,sl , tl ,vl} for all points
of interest. Feature matching is the process of establishing correspondences between



features from two images by examining similarity of the feature descriptor values vl .

3.2 Seeding Using Local Structure
Since the desired salient features should have a relatively large change of pdf over scale,
they typically are image blobs that have large intensity variation with respect to their
surrounding pixels. We propose to use these blobs as seeds for saliency detection.

Scale invariant blob detection techniques can be used to extract blobs. For example,
Lindeberg [7] detected blobs by searching for local extrema of Laplacian-of-Gaussian
filtered images in scale space. But this method detects circular-shaped blobs only. For
arbitrary blob shapes, one needs an affine-invariant blob detector like the Hessian-Affine
detector [11]. But its affine-adaptation will need to compute the structure tensor of a
region’s neighborhood, which is usually much larger than the region itself. For images of
3D scenes, this large neighborhood is likely to cover surface depth change, in which case
the local neighborhoods are no longer covariant to affine transform.

We use blobs detected by MSER [9] as our seeds. Since their detection procedure
relies solely on image intensity contrast, those with high intensity variation with respect
to their surrounding neighbors are preferred over those with low contrast. We loosen
the requirement on neighbor contrast by lowering the minimum margin between inner
and outer regions. This will result in a large collection of regions, many of which may
be detected due to noise. These noisy regions will be eliminated when their statistical
properties are further examined, as will be described in detail in the next section.

One interesting property of these seeds is that their shape is readily obtained by ana-
lyzing the region boundary. The region is enclosed by an ellipse, represented by the seed’s

location xl = (x0,y0)T , scale sl , and tensor tl =
(

A B
B C

)
. The ellipse is defined by the

quadratic equation: (
x−xl

)T
(

A B
B C

)(
x−xl

)
= s2

l . (4)

3.3 Local Salient Region Adaptation
Now that we have obtained the initial set of feature seeds F = { f1, ... fN}, where fl =
{xl ,sl , tl}, l ∈ 1, ...N, we will examine their saliency as defined in Equation (1). We will
also locally adapt the seeds to choose the position and scale for which they achieve op-
timal saliency. Since the region boundary already gives a good estimate of the elliptical
shape, we will keep the tl fixed during the optimization. In the adaptation, we will maxi-
mize the two criteria, H(region entropy) and W (inter-scale saliency), by interleaving scale
saliency selection with location refinement.

We start each seed with a scale saliency selection. If the initial seed is scale salient
(has local H maximum), it will undergo local adaptation; otherwise, it will be discarded.
For seeds passing the initial scale saliency test, local adaptation will end when either
maximum H and W are found or the iteration limit is encountered.

Scale Saliency Selection When choosing the optimal scale of a seed region fl = {xl ,sl , tl},
we look for a local maximum of H(sl ,xl) by changing the scale sl while keeping the lo-
cation xl fixed. If there exists a local maximum at scale s′l , we update this seed’s scale to



s′l and proceed with location refinement. If no maximum is obtained, this seed is regarded
as non-salient and discarded.

Since we have already obtained a rough scale in the seeding step, we can search more
efficiently thanks to two simplifications. First, the search range of s′l can be set to be small.
This is in contrast to the original scale-saliency method [6], where a large search space
is needed in order to capture all possible salient regions. Second, we can stop searching
once we encounter the first local maximum H. This is because we are already working in
a predefined narrow range of scale and the first characteristic salient scale already gives
us a tight bound of the interest region.

Position Refinement Once the seed’s optimal scale is obtained, we maximize the seed’s
W (s,x) by looking for the nearest neighbor that has a higher W (s,x). Within a certain
range, if there is a region at x′l that has a larger W (s,x), we move the seed to this position
(by updating xl with x′l). After position adjustment, we go back to the previous step to see
if any scale adaption is needed. If, on the other hand, no neighbor has a better W (s,x), we
stop the iteration and take the current xl as the optimal position.

3.4 Robust Histogram Estimation and Extension To Color Image
Region intensity histogramming is used for estimating the local pdf over the elliptical
sampling window. For an 8-bit grayscale image, for example, a 256-bin histogram is
used to count the number of occurrences of pixels with gray levels from 0 to 255. We
find, however, that the region’s local intensity histogram is very sensitive to noise. This
sensitivity is more evident when the region is small, since only a small number of pixels
are used in filling the histogram and small gray-level deviations of some of them will
change the overall histogram significantly.

We tackle this problem by applying Gaussian smoothing and sub-sampling to the
initial intensity histogram. The smoothing window size is related to the sub-sampling
factor. Here, for grayscale images we use a sub-sampling factor of 4 by representing
the smoothed histogram with a 64-bin histogram. This procedure makes salient region
intensity pdf estimation more robust to noise.

More importantly, this robust estimation makes SGSR’s extension to color images
practical. The original formulation of scale saliency is applicable to color images. In
practice, however, one would have to work on a histogram of dimension 16777216 (256×
256×256) with a normal RGB image. This demands prohibitive resources and the repre-
sentation will be very sensitive to noise. With a sub-sampling factor of 16 for RGB color
images, we will end up working with 4096-dimensional (16×16×16) histograms.

4 Performance Evaluation on Planar Scenes
The objective of performance tests on planar scenes is to evaluate the extent to which
SGSRs commute with viewpoint. We use the testing methodology and graffiti image set
proposed in [11]. In testing performance under viewpoint changes, we ran the SGSR
detector on a set of images of the same planar scene acquired from different viewpoints.
The homographies between the images are given as ground truth.

Here, we test SGSR against the state-of-the-art detectors reported in [11]: Hessian-
Affine detector, Harris-Affine detector, MSER detector, Intensity Extrema-based Region



detector, and Edge-based Region detector. We compare them on four performance indi-
cators: the number of correspondences, the repeatability, the number of correct matches,
and the matching score (as defined in [11]):

• The number of correspondences is the absolute number of region pairs (between
the reference image and the matching image) which are repeatably detected. Two
regions are deemed to be repeatably detected if the overlap error εO is sufficiently
small (in this experiment, we choose εO 6 40%). The overlap error is defined as
the error in the feature areas when the two corresponding regions are converted to
a common coordinate frame according to the homography:

εO = 1−
Rµa

⋂
RHT µbH

Rµa

⋃
RHT µbH

, (5)

where H is the homography relating the two images, and (Rµa

⋂
RHT µbH) and

(Rµa

⋃
RHT µbH) represent the area of intersection and union of the regions re-

spectively.

• Repeatability is the ratio between the number of correspondences and the smaller
of the number of detected regions in the pair of images.

• The number of correct matches is the total number of correct matches among the
correspondences. A region correspondence is deemed correct if the overlap error is
minimal and less than a predefined threshold (εO 6 40%). This is the ground truth
for correct matches in the matching score comparison.

• The matching score is meant as an indication of the distinctiveness of features de-
tected by a particular detector. The idea is to see how well the regions can be
matched, when all are represented by SIFT descriptors [8]. A match is the nearest
neighbour in the descriptor space according to their Euclidean distance. The match-
ing score is defined as the ratio between the number of correct matches (obtained
using SIFT descriptors) and the smaller number of detected regions in the pair of
images. The results are indicative rather than quantitative, since they depend on
many factors, one of which is the type of descriptor that is used in representing the
feature.

Comparison Results The repeatability comparison results are reported in Figure 1(a),
showing repeatability as a function of viewpoint change. SGSRs achieve competitive
performance for most viewing angles, but rely on a relatively small number of features
(Figure 1(b)). When represented by SIFT descriptors, SGSRs’ matching scores are close
to that of the best performer, MSERs, for smaller viewpoint angle changes, and 10%
better than MSERs for a viewpoint change of 60◦ (Figure 1(c)). Again, this is achieved
using a much smaller number of features (Figure 1(d)).

One distinction of the SGSR detector is that it achieves competitive results using the
most compact set of features. This can be advantageous when applications (such as object
or landmark recognition) require a compact representation, as we find that most detectors’
performances decline when they are asked to detect a smaller set of repeatable features.
It is shown in figure 21(c) of [11] that most detectors’ repeatability falls with decreasing
number of features used.



10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

re
pe

at
eb

ili
ty

 %

viewpoint angle

 

 
sgsraf
haraff
hesaff
mseraf
ibraff
ebraff

(a) Repeatability

20 25 30 35 40 45 50 55 60
0

500

1000

1500

nu
m

be
r 

of
 c

or
re

sp
on

de
nc

es

viewpoint angle

 

 
sgsraf
haraff
hesaff
mseraf
ibraff
ebraff

(b) Number of Correspondences
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(c) Matching Score
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(d) Number of correct matches

Figure 1: Performance Comparison The detectors are compared on the graffiti im-
age set; we show the 4 performance measurements of the detectors SGSR (denoted
sgsraf), Hessian-Affine detector (hesaff), Harris-Affine detector (haraff), MSER, Inten-
sity extrema-based Region detector (ibraff), and Edge-based Region detector (ebraff).

5 Performance Evaluation on 3D Scenes
The aim here is to measure our method’s performance at detecting features in images of
3D scenes for the purpose of wide baseline matching. We will use one pair of images of
the same 3D scene acquired from different angles and distances (we call it the J-scene, see
Figure 2). It represents a typical outdoor scene containing mainly man-made structures,
common to the pair are two buildings with walls (roughly) perpendicular to each other.
For comparison, we apply three different feature detectors, Hessian-Affine, MSER, and
SGSR, on the J-scene image set. To gauge the quality of features localized by each of the
detectors, SIFT descriptors are used as a common basis for matching.

Feature Detection Results Figure 3 shows the features detected by the detectors. The
Hessian-Affine features occur mainly in two places: corners and edges of buildings, where
surface discontinuities occur; and snow-banks, which are densely textured and full of
noise. In comparison, fewer MSERs occur on building edges and corners and more of
them are detected on the building walls. MSERs are also densely detected on the snow-



(a) left (b) right

Figure 2: Stereo images of the J-scene

banks and tree branches. SGSR detector mainly captures blob structures on the building
walls and much fewer of them occur in noisy parts of the scene such as snow-banks and
tree branches.

The figure shows that the Hessian-Affine detector failed to detect structures such as
windows and bricks on the wall. These blobs are close to each other and create a regular
repetitive pattern. If we look at the only window detected (on the upper part of the front
building in Figure 3(a)), it is isolated from its neighbors with distinct intensity. The MSER
detector was able to extract some high-contrast blobs, but it also responded positively to
many noisy regions. The SGSR detector captured most of the blob patterns on the walls
and also discarded many noisy regions.

(a) Hessian-Affine, left (b) MSER, left (c) SGSR, left

(d) Hessian-Affine, right (e) MSER, right (f) SGSR, right

Figure 3: Features Detected The images show features detected by three different affine
detectors: Hessian-Affine, MSER, and SGSR, on the J-scene images, .



# Features Detected
Detector (left-right) # Total Matches # Outlier Matches
Hessian-Affine 569-382 2 2
MSER 311-271 4 2
SGSR 266-258 15 2

Table 1: Feature matching comparison

Feature Matching Results For each detector, we perform a feature matching exper-
iment with the following procedure. First, the features are normalized to a fixed-sized
circular region and their SIFT descriptors are extracted. Second, we obtain the initial set
of matches by nearest neighbour matching in the descriptor space. Finally, outliers are
rejected by global consistency checking using RANSAC [4].

Table 1 gives the number of detected features, the number of matched features and
the number of outlier matches found by the three detectors. We can see that SGSRs
perform best for wide baseline matching of the J-scene. In contrast, MSERs and Hessian-
Affine regions are poorly matched. Hessian-Affine regions are either not distinct enough
(building corners will have similar SIFT descriptors) or not repeated in the scene (lower
part of the images, such as noisy snow-banks and cars). Thus, no correct matching is
found. Although the MSER detector repeatably captured some high contrast regions such
as windows, their SIFT descriptor is not distinct enough due to large region sizes and
different light reflectance of the corresponding window glasses (see windows on the side
building in Figure 2). Finally, we show the correctly matched SGSR regions in Figure 4.
Notice how their shapes are adapted to the scale and viewing angle changes.

Figure 4: Matching result obtained with SGSRs

6 Conclusion
In this paper, we have presented a novel affine covariant feature detector based on entropy-
based saliency theory. Our method is different from the original salient region detector
of Kadir et al. [6] in both its initial seeding procedure and subsequent local region adap-
tation. We also introduced robust histogram smoothing and sub-sampling to cope with
image noise and to extend SGSR’s tractability to color images. This method’s competi-
tive performance is demonstrated in both planar and 3D scenes.
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