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Abstract

The shape and reflectance of complex objects, for use in c@mgraphics
applications, cannot always be acquired using speciaéggibment due to
cost or pratical considerations. We want to provide an ead\ycast-effective
way for the approximate recovery of both shape and spataltying re-

flectance of objects using commodity hardware.

In this paper, we present an image-based technique for egogv3D
shape and spatially-varying reflectance properties fromaase set of pho-
tographs, taken under varying illumination. Our techniguedels the re-
flectance with a set of low-parameter BRDFs without knowéed§the lo-
cation of the light-sources or camera. This results an abflexind portable
system that can be used in the field.

We successfully apply the approach to several objectstistintand real),
recovering shape and reflectance. The acquired informesiorthen be used
to render the object with modifications to geometry and lightvia tradi-
tional rendering methods.

1 Introduction

Many applications in entertainment, augmented/virtualitg architecture and digital
museums require photorealistic rendering of real-worlgects from novel viewpoints
and illumination.

This requires the use of realistic models for all componefitmage synthesis, includ-
ing geometry, light sources, materials and cameras. Theselsican each be acquired
using specialized equipment such as a 3d-scanner and argftedtometer [10, 11, 14].
But this is generally a time and resource consuming prod¥esvant to provide an easy
and cost-effective way for the approximate recovery of ksbthpe and spatially-varying
reflectance of objects using commodity hardware. Additignae want the setup to be
portable and capable of capturing a wide range of objects.

To this end, we present an image-based method that uses brenmdder of pho-
tographs of inanimate objects taken from a fixed viewpoint.e&dch photograph, the
object is lit with an ordinary light source at a different &ion, however no knowledge
about the location and strength of the light sources is reduiy the system. With such a
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set of photographs, we observe the surface points only wsthall number of illumina-

tion angles. As a result, there is too little data to deteenziriull bidirectional reflectance
function for each surface point. We address this issue inwaps. First, we limit the

reflectance to a low-parameter model. Secondly, we use theradtion that many ob-
jects can be decomposed into a small number of material$. [@/@ cluster the acquired
samples into groups of similar materials and fit a model tdegoup.

In our work, we reconstruct both shape and spatially-vayyieflectance without
making any additional assumptions by alternating betwbenoptimization of geome-
try, lighting (direction and intensity), diffuse reflectam(albedo) and specular reflectance
each time fixing all other unknowns. In particular, our cimitions are

e We allow a wide range of objects to be captured using a stdracdanera with any
type of lens.

e The system is flexible and portable enough to be used in thek fiel
e We present an improved optimization approach suited foneeds.

We require only a relatively small number of photographo(atl0-15 images for
one object), thereby speeding up the acquisition phase.

After our reconstruction, many editing methods are madesiptes In addition to
changes in lighting and viewpoint, the albedo and materniajgresented as texturemaps,
can be easily edited using conventional image editing sofw

2 Related Work

In traditional photometric stereo algorithms [18, 19], theface is assumed to be lamber-
tian or spatially uniform. More recent work [1-3, 12] applieon-lambertian models to
photometric stereo. However, most require calibratiorheflight source, reference ob-
jects [3, 4] or a known reflectance map. Our method works witlealibration and prior
knowledge.

Georghiades et al. [1] proposed a method that accommodatésefspatial variation
of the diffuse reflectance, but assumes the specular prepare constant. Our approach
allows both reflectance properties to vary across the syrfermitting the reconstruction
of objects comprised of several materials or a mixture ofifgaiith different reflectance
characteristics.

Goldman et al. [2] describes a photometric stereo methodudaces with spatially-
varying reflectance, including both diffuse and speculapprties. This method decom-
poses the object’'s material into a small number of fundaasl@RDFs and recovers both
shape and weight maps for the materials. However, they as#uenlighting directions
are known, whereas we recover them from the input imagesitiaddlly, we believe our
BRDF optimization scheme is less sensitive to overfitting thuits non-local nature.

Paterson et al. [13] present a system for capturing the gepmiecomplex materials
with varying albedo and BRDF. A digital camera with attaclilegh is used to sample
the geometry from different angles and illumination. Theteyn however requires the
geometry to be roughly planar.

Image-based BRDF acquisition has already been widely relse@. The proposed
methods [10, 11, 14] generally separate the measuremehe@RDF from the shape



estimation: they either use samples with known shape (&gth@r planar) or the geom-
etry is obtained using a 3d-scanner. Lensch et al. [9] dlusftectance samples over a
known surface into groups of similar materials and fit a Lafoe [7] model to each group
in an iterative way. Their method however requires apprexérgeometry, whereas our
approach reconstructs the surface solely from the images.

We argue that the system we present is simple enough to alidespread use, de-
pends on a minimum amount of calibration and provides ateureeasurements for a
variety of materials and objects.

3 Problem Statement

The input of our system is a set of photographs of an inanirobject taken under a
single varying distant illuminant. From these images, wakde reconstruct the shape and
reflectance properties of that object as well as the illutiona ignoring effects such as
interreflection, transparency and translucency. In généa contribution from indirect
illumination is relatively small and can be ignored.

Our material model is motivated by the observation that weald variations in ap-
pearance across a surface are often the result of a congpositia small number of
BRDFs [2, 4, 9]. Therefore, the reflectance of a surface psintodeled as a diffuse part
and a mixture of the basis BRDFs. The number of BRDFs to sawésfgiven by the
user.

Lastly, in contrast to most related work, we model our canasrperspective. This has
many advantages over orthographic cameras: perspectiveraa are more common and
hence less expensive. Most researchers therefore ap@texen orthographic camera
using a regular camera with a telephoto lens placed at andistaThis solution is still
relatively expensive and also limits the size of objectd ttem be captured. It is for
example impractical to acquire images of a statue. The uaa ofthographic model also
introduces errors that can be avoided with a perspectiveehjbl]. Perspective cameras
allow different kinds of lenses to be used (e.g. wide-anglacro lenses). The downside
however is that a calibration step is required for the canparameters. On the other
hand, this is a well-studied and understood problem and eathieved with a minimum
of effort [17].

In the following sections, we describe the representatiesl for the geometry and
BRDFs.

3.1 Shape Model

The most commonly used representation of the object suifeglRotometric stereo is a
depth functionz(x,y) parametrized by the image plane coordinates [1, 2, 8, 19ks@h
depth values can only be indirectly obtained from the shadiin first estimating the
normals and integrating. However the normal field is not esasly integratable. This
can be solved by enforcing integrability [2, 6, 19] or by emgimg the depth function
z(x,y) using basis functions [1, 8]. The latter methods are betiiéed when dealing with
a perspective camera model and non-diffuse reflectance.

Our surface representation is inspired by Lee et al. [8]. Wkrdtize the object surface
into a set of triangular elements. We construct these elt&sr@n dividing the image
domain into triangled; with verticesp;. Then, the surface is approximated by triangular



surface patche§; with verticesh, such thatS andP, project toTy and p; respectively.
This surface is uniquely specified by 8| or equivalently the depthg associated with
all p;. The surface verticelR can be expressed in termsmf= (X, y;) andz; as

(f7f7)7

wheref is the focal length of the camera.

3.2 BRDF Model

The surface BRDF is generally represented by a four-dins@asbi-directional reflectance
distribution function. These four parameters are the litjteiction anglesf,@) and view-
ing angles 6,,@). In this work, we restrict ourselves to the isotropic vatihere the
angular variation reduces to three dimensions.

Recovering the entire BRDF is not feasible due to the largabrar of samples re-
quired. We tackle this problem by imposing some parametadeh of the reflectance
function. This simplifies to problem to estimating a handftiparameters [1, 2]. The
lack of generality of such a parametric model also avoidsnmetly incorporating er-
rors made in the estimation of geometry and lighting. Weasent our reflectance by the
combination of a lambertian model and a simplified specutarahce-Sparrow lobe [16]:

V262
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with (as,V) the specular parameters afigthe angle between normal and halfway
vector.

3.3 Lighting Model

Since we consider our light sources to be directional, therad a pixell (x) due to light
sourcel; can be expressed as

1(¥) = [a () + 5 wnfs(am,n(x),v(x),Li)] n(x) "L (1)

We usea to denote the diffuse reflectance (albedo) for each pixet flihctionfs repre-
sents the Torrance-Sparrow BRDF with parametggswith associated weighty,. The
normal is denoted a¥x) and viewing direction ag(x).

4 Shape and Reflectance Reconstruction

We acquirek images of the object with different illumination, denoteslip As the

images might contain shadows and saturations, which arermtr model, we need to
mark such pixels as invalid. Saturations are simply deteechiby thresholding, while
shadowed pixels are found by thresholding the ratio betvleempixel intensity and the
albedo (similar to Georghiades et al. [1]). If the varianta pixel's reflectance samples is
low, all the samples are removed. This effectively makespbxal part of the background.



The initial albedo is obtained by sorting the measured reftee values for each
pixel, resulting in imageB, whereP, is the dimmest an&,_1 the brightest and selecting
the imageP with no highlight nor shadow. For a set of 20 images, we founadR,, is a
robust choice.

Based on the described model, we solve the following mirdtion problem to deter-
mine shape and reflectance properties

min guk(x)—I(x,or,orm,Z,Li,mn)\2 2
o

a,0m,SL;

Optimization of this problem is non-trivial: many optimtizan algorithms can easily
become trapped in local minima and the high dimensionaldékes standard algorithms
intractable. We solve this problem in an iterative fashigrdbcomposing it into a set of
smaller problems first. Such an optimization is also perémtay Georghiades et al. [1]
and Goldman et al. [2]. Although this strategy still does guwarantee to converge to the
optimal solution, we have found it gives good results witmsanodifications.

Our optimization approach is outlined in the next section.

5 Algorithm

Input Images Lighting refinement ‘Shape and normal optimization

Figure 1: An overview of the algorithm. The blue arrows shitw flow between the
different optimization components. The green arrows iadi¢he tight coupling between
some components.

Our algorithm is composed of several components, each atwhidescribed in detall
in the following sections. Figure 1 gives an overview of tneemponents.

Initialization. In this phase, we compute an initial estimate for the diffaledo as
described irg4 and initialize all depth variables to a arbitrary constamdt the specular
BRDF parameters to 0.

We obtain a decent estimate of the light directions from lartian photometric stereo
[18,19]. This part is further described in section 5.1.

After initialization, the system optimizes the objectivmétion by repeating the fol-
lowing steps:

1. Refine shapeThe depth values for our shape model are optimized whileitgld
the light directions and material attributes constant. Wered the algorithm by Lee et
al. [8] to incorporate BRDFs and added smoothness contgrain

After this optimization, we optimize the normals further péxel.



2. Update the lambertian albedo.While the other optimization parameters are kept
fixed, we compute a new albedo for each pixel in a linear lepsii®s fashion.

3. Refine the light source directions.We refine the directions and strengths of the
light sources, while holding the other parameters constr light source directions are
refined using Newton’s method and their strengths usingliteast squares.

4. Optimize BRDF parameters. The BRDF parameters are optimized using an
iterative clustering and fitting procedure, similar to Leims et al. [9] Further details can
be found in Section 5.5.

5. Termination Repeat steps 1-4 until the estimate converges. Each steprargeed
to decrease the objective function.

5.1 Initialization

Yuille et al. [19] outline a method to decompose the intgnsiatrix of M images into
the M light directions and the product of normal and albedo peelpip to an arbitrary
transformation. Since we are only interested in the lighgctions, we can use a simpler,
more efficient technique: we perform an eigenvalue anatysi&)" and obtain the light
directions from the three eigenvectors with the biggesemiglues. This however can
not be expected to work in the presence of shadows, ambugntt Kpecularities and
noise. We therefore sift out all the columns of the intensitrix which contain invalid
measurements as described in Section 4.

The results obtained from lambertian photometric sterecsabject to the so-called
bas-relief ambiguity [18,19]. At this point, we can intradusome prior knowledge about
the lighting conditions: most of the light sources will baged in front of the object. We
therefore rotate the obtained light directions so that tlexage direction coincides with
the optical axis of the camera. We also introduce a userfipecotation around this axis
to resolve further ambiguities.

5.2 Shape Reconstruction

We now only solve for shape and fix all other parameters. Natesince the normals and
viewing directions are all expressed in terms of the depthatertice;,i =0,..., M,
the reflectance functior{x) is only a function of the deptg, Z; andz, of the supporting
triangle:

3 Y0 -1SLP = 3 5 (9 ~1(2,2,.2)| ®

We minimize this equation by successively linearizing thalmear function
1(Z,Z;,2)) around the previously estimated solution, following Lealef8]. The result-
ing linear equation is then efficiently solved using conjeggradient. To ensure a smooth
solution, we altered the functional to additionally miniaithe laplacian at each vertex.

The shape model gives a fairly coarse representation ofébengtry and normals,
therefore we apply an additional normal refinement per pirgdhg a multi-scale grid
search: the error is successively computed for a set of risima certain radius around
the estimated normal. Each time the best normal is kept andhthius is decreased.



5.3 Albedo Refinement

Note that the optimization is now linear with respect to tledo and each albedo value is
decoupled from all the others. Hence we can easily solvd faimng linear least squares.
This boils down to

_ z Ik(X) — memfs(am,n(x),v, Lk)
aty == SN TL

5.4 Light source Refinement

Note that light source of each frame can be updated indepégdgVe utilize Newton’s
method since the direction of light source is only two dinienal. We found the error
function sufficiently smooth for Newton’s method to work. &eoid converging to a local
minima in the early steps of the algorithm, we added a priathtoobjective function
such that the pixels, that are believed to be due to a spdaglalight, have a reflection
direction close to the viewing direction. We determine éhpixels by thresholding the
difference between the real reflectance and our curremhatiof the diffuse reflectance.
This prior creates a smoother error function and aids intefaenvergence.

The strengths are determined in a least squares fashiolassimithe albedo refine-
ment.

5.5 BRDF Optimization

The BRDF optimization consists of the split-recluster-fitlgroject process as presented
by Lensch et al. [9] with some minor modifications: insteadhef Lafortune model, we
employ a Torrance-Sparrow model. In the fitting step, we ale@mht the reflectance
samples based on the product of incident and outgoing aagk$ilter out any samples
with grazing angles> 80 degrees) to avoid fitting errors. In each iteration, ontg o
split-recluster-fit step is executed to prevent overfitting

We believe this procedure to be less sensitive to overfittiragn the segmentation
based method of Goldman et al. [2] because it is inherentlynalocal optimization.

5.6 Tight coupling

After some experiments, we observed that a tighter couplatgeen the light refinement
and both normal and BRDF optimization results in a bettevermyence and further helps
the reconstruction to avoid local minima. The tight couglia obtained by placing the
light refinement within the error functions of the normal @®DF optimizations. This
way, the optimizations are performed on the error under &s¢ jpossible light estimate.

6 Results

To capture our input images, we used a Canon 20D camera withsdrhm lens and a
single exposure for each lighting direction. We used a shadfigen light source for the
lighting. The images are captured at full resolution of taeera (3504x2336), but the
results were computed at a down-sampled resolution (640)x48typical capture session
consists of 12 lighting directions and takes about 10 min.



Figure 2: Comparison to ground truth. Left: models rendersder novel lighting condi-
tions not in training set. Right: images under approxinyetieé same lighting condition.

Figure 3: Input, model and reconstruction for some objeafsSource Image. b) Re-
covered normal map. c) Recovered albedo. d) Recovered tweigh (false color). €)
Spheres shaded with basis BRDFs. f) Model rendered undgnatillumination.

Most of the examples converged after 8-10 iterations, iruaBe4 hours on a 3Ghz
Pentium 4. Some steps of the algorithm make use of the GPctaaate shading and
error computation.

Since our goal is to produce plausible reconstructions, veevsa few objects under
different viewpoints and lighting conditions in Figureaftéind 2. The relighting results
are compared with real photos taken under similar lightiogditions not present in the
input set. Note the similarity of these images.

Figure 3 shows the different components of the obtained irfoda range of objects.
Note that the algorithm estimates detailed normal map®atafhce properties and light-
ing conditions for each object. A few artifacts still occarareas where highlights are
observed in most of the input images, such as the neck of ttle dine presence of high-
lights in all of the images causes the shape and normal dgiimia overshoot the ideal
solution. The impact of these artifacts on the rerenderimdjralighting of these objects
is however minor.

The obtained material reconstruction also makes manyneditichniques possible.
The obtained BRDFs can be altered, an example of this is sio®igure 4(b). Addi-
tionally, texture synthesis [5] techniques can be appliethe albedo and weightmaps.
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Figure 4: a) Synthesized views of our reconstructions. bg§ diacks material proper-
ties have been changed to a much more specular BRDF by dieeupuiation of the
parameters.

7 Discussion and Future Work

We have demonstrated a method that acquires shape andlgpatiging BRDFs from
a set of photographs under varying illumination. The figelif the reconstructions are
lower than those obtained using methods with more obsenator knowledge about
some of the unknowns (lighting, materials or geometry). &tbaless, we are able to
acquire a range of models that can be reused under diffei@ming and lighting condi-
tions.

Our approach is able to capture shape and BRDFs using a simatller of photos and
without the need for specialized equipment. We only reqaicamera and a light source.
This results in a compact and portable setup.

The reconstruction depends on the lighting conditions ulethg acquisition. The
optimization is subject to overfitting if the light source® doo similar or when high-
lights are always observed in the same area. Additional #mess terms in the objective
function might ameliorate these artifacts.

In future work, we want to investigate methods that take stvadand interreflections
into account. Both contain information that can be useddushape and material recon-
struction.
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