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Abstract

A novel frequency domain approach to roto-translation estimation is pre-
sented. The baseline gradient cross-correlation method is extended to handle
rotations. A key feature of the proposed scheme is the ability to achieve good
performance in the presence of both large translations and rotations as well
as noise, a scenario for which other Fourier-based methods typically fail. Ro-
bustness and accuracy in conjunction with computational efficiency, offered
by the frequency domain formulation, make the algorithm useful in a number
of image processing tasks such as image registration.

1 Introduction

The estimation of relative motions between two images finds applications in a multitude
of image processing and computer vision tasks such as image registration, video com-
pression and object recognition. In this work, the focus is on rigid motion estimation for
the class of similarity transforms and, in particular, for translational displacements and
rotations.

Recently there has been an increased interest in correlation-based motion estimation
techniques which operate in the Fourier domain. A frequency domain approach to motion
estimation possesses two rather appealing properties: robustness to noise and compu-
tational efficiency. Robustness to noise is achieved since correlation makes use of all
available image information. Computational efficiency comes from the translational in-
variance property of the magnitude of the Fourier transform (FT) and the use of fast
algorithms. Given two images that are related by a roto-translation, the relative rotation
affects only the magnitudes of the FTs of the two images. The magnitudes are repre-
sented in the polar Fourier domain and rotation is recovered using 1D correlation over the
angular parameter. Then, after compensating for rotation, translation may be estimated
using standard 2D Cartesian cross-correlation. Correlations are efficiently computed as a
multiplication in the frequency domain through the use of FFT-based techniques.
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In this work, to account for rotations, an extension to the baseline gradient-based
cross-correlation method [1] is introduced. The main idea behind the proposed scheme
is to extract the complex gray level edge maps of the given images using robust differ-
ential operators and then perform correlation. Essentially, the algorithm combines the
natural advantages of a good feature selection offered by gradient-based methods with
the robustness and speed provided by FFT-based correlation schemes.

An important challenge for Fourier-based motion estimation algorithms is to perform
robustly in the presence of both large translations and rotations. In this case, large non-
overlapping regions between the two images are introduced and the frequency domain
motion estimation formulation holds approximately. Experimental results demonstrate
that the robustness and good feature selectivity provided by the proposed approach makes
the algorithm capable of estimating successfully the motion parameters for four represen-
tative images in the presence of both noise and relatively large non-overlapping parts.

2 Related work

In this section, a brief review of current state-of-the-art Fourier-based methods for global
motion estimation is presented. For a representative example of frequency domain meth-
ods which are able to handle local motions, the reader is referred to [6]. In all methods,
the relative translation is estimated using phase correlation [7], therefore the focus is on
the rotation estimation part.

Perhaps the most popular method for planar roto-translation estimation in the fre-
quency domain is the extended phase correlation method described in [9]. The algorithm
steps on the translation invariance property of the magnitude of the FT to sequentially
estimate the relative rotation and translation between two given images. Phase correla-
tion is used instead of standard correlation since it combines both robustness to noise and
good localization accuracy. A pseudopolar-based extension to [9] is proposed in [4]. To
recover rotation, the method relies on the pseudopolar FT which rapidly computes a dis-
crete FT on a nearly polar grid. The algorithm does not involve any Cartesian to polar
conversion in the Fourier magnitude domain and, thus, it does not suffer from inaccura-
cies induced by the interpolation process; nevertheless the pseudopolar FT is not a true
polar Fourier representation and the method estimates the rotation in an iterative fashion.
A frequency domain approach to register images in the presence of aliasing is described
in [10]. Rotation is recovered using correlation between two 1D functions of the angular
parameter. The functions are obtained by averaging the aliasing-free part of the polar
Fourier magnitude representation of the two images with respect to the radial parameter.

In addition to correlation schemes, difference functions [8],[5] provide a robust and
accurate framework for Fourier-based rotation estimation. Given two images that are
related by a rotation, it can be shown [8] that the difference between the magnitudes of
the FTs of the first image and the flipped version of the second has a distinctive pair
of orthogonal zero-crossing lines. The orientation of those lines in the Fourier plane is
directly related to the unknown rotation and is recovered using a simple Hough transform.
The method in [5] defines the difference function in the angular direction and proposes a
pseudopolar FFT-based implementation for its accurate computation.



3 Frequency domain roto-translation estimation using
gradient cross-correlation

Let I(x,y), [x,y]T € %? be an image function. We denote I{k;, k), [ke,ky]T € %* the
Fourier transform (FT) of  and M (ky, k,) the magnitude of I, that is M = |I|. Additionally,

in the polar Fourier domain, we have 1(k,,kg) and M (k,,kg), where k, = /k2 +k3 and
kg = arctan (ky /ky).

3.1 Translation estimation

Given two images, /1 and I, that are related by an unknown translation [z, ty]T c %, ie.
Il(x+tX7y+t)'):IZ(x7y) (1)

the translational displacement can be recovered from the 2D cross-correlation function
C(u,v), [u,v]" € %° as arg(, ,ymax{C(u,v)}. From the convolution theorem of the FT
[3], C is given by: R R

Clu,v) = F T (e, k)5 (K, Ky )} )

where F~! is the inverse FT and * denotes the complex conjugate operator. The shift
property of the FT [3] states that if the relation between I; and I, is given by (1), then, in
the frequency domain, it holds

Tika k) 8 00) = T (ke ) )
and therefore (2) becomes
C(M,V) = Fil{Mlz(kx,ky>€7j(erx+kyt}')} (4)

The above analysis summarizes the main principles of frequency domain correlation-
based translation estimation. For finite discrete images, the FT is efficiently implemented
using FFT routines and the algorithm’s complexity is O(N2 logN), where N is the length
of the given images.

From (4), it can be seen that the phase difference term e J <kxt~*+k~V’y), which contains
the translational information, is weighted by the magnitude M;. Then, the inverse FT is
taken to yield the standard 2D spatial correlation function C. In practise, where (1) holds
approximately and M # M, the translational displacement is estimated through (2), and
in this case, the phase difference function is weighted by the term M;M;. Due to the low
pass nature of images, the weighting operation results in a peak of large magnitude in C,
however, at the same time, good peak localization is inevitably sacrificed.

To tackle the problem, the phase correlation method performs whitening of the Fourier
magnitude spectra and essentially considers the phase difference function solely. It can be
easily seen that, in this case, the resulting correlation function will be a 2D dirac located
at the unknown translation. In the presence of noise and dissimilar parts, the value of the
peak is significantly reduced and the method may become unstable [9].

Gradient cross-correlation is an approach which lies somewhere between the standard
and phase correlation methods. For a given image /, a gray level edge map G, which
retains both magnitude and orientation information, is computed as follows

G =G+ jG, 5)



where G, = VI and G, = V,I are the gradients along the horizontal and vertical direction
respectively. This step provides the location, magnitude and orientation of the image high-
activity structures which can be used as salient features to estimate rigid motions between
images. At the same time, areas of constant intensity level which do not provide any
reference points for motion estimation and are very sensitive to possible uneven lighting
conditions, are discarded from the representation.

Gradient cross-correlation (GC) is defined as

GC(u,v) = F ' {G (ke, k) G (ke ky) } (6)

It can be easily shown that differentiation in the image spatial domain is equivalent to
high-pass filtering in the Fourier domain. Taking the FT in both parts of (5) yields

~ ~ ~

Glky, ky) = jkl (ki ky) — kyl (ks ky) 0

The magnitude M is given by
Mg (ky,ky) = \/ (K2 +k§)M(kx7ky) = kM (ky,kg) (8)

and, in this case, the weighting operation results in a peak of large magnitude in GC with
very good localization accuracy.

In practice, differentiation in (5) is performed using robust and efficient differentia-
tion operators. The result is a band-pass filtered version of the original image. Therefore,
in addition to low spatial frequencies, high frequency components, which are largely af-
fected by noise and aliasing, are filtered out as well.

3.2 Roto-translation estimation

Assume now that we are given two images, /| and I, that are related by a rotation 6y and
translation [t,,z,], that is

I (xcos 6y +ysin 6y + 1, —xsin 6y +ycos 6y +1,) = L (x,y) 9)
In the polar Fourier domain, we have
Ty (ky, kg + Bp)e/Katrthoty) = (k. k) (10)
Taking the magnitude in both parts yields
M (ky ko + 60) = Ma (kv ko) (11

which is also known as the translation invariance property of the magnitude of the FT [3].
It can be seen that in the polar Fourier magnitude domain, rotations reduce to translations
and, therefore, one can estimate 6y using correlation over k,. After compensating for
rotation, the remaining unknown translation can be recovered using Cartesian correlation
as described~before. Note that if 6 is the estimated rotation, then it can be shown that
6y = 6y or Bp = By + m. To resolve the ambiguity, one needs to compensate for both
possible rotations, compute the Cartesian correlations and, finally, choose as valid solution
the one that yields the highest peak [9].



In rotation estimation using gradient cross-correlation, M| and M, are replaced by
Mg, and Mg,. This is a key element to the robustness of the proposed scheme, since
Mg does not contain low frequencies, which do not provide any reference points for the
estimation of 6y, is little affected by noise and aliasing, and essentially emphasizes the
frequency bands which reflect the orientation of the image features. To exemplify the
latter point, consider the 1D representation A(kg) = [ kM (kr,kg) and the corresponding
Ag obtained by averaging Mg computed from the “Lena” image, as sketched in Fig. (1)
(b). The image contains a wide range of frequencies and, consequently, A is almost flat.
In this case, matching by correlation may become unstable. In contrary, Ag contains two
distinctive peaks which can be used as salient features to perform robust correlation.

o ()

(a) (b
Figure 1: (a) “Lena” and (b) the 1D representations A¢ (straight line) and A (dashed line).

A second advantage of the proposed scheme over other Fourier-based methods comes
when implementation in a digital environment is to be considered. In particular, due to the
periodic nature of the FFT, in practice, windowing should be applied to the input images
to reduce the effect of boundaries whose registration corresponds to zero motion. The
window is typically placed at the center of the image and the result is inevitably some
loss of information. For the case of translations (even large), the problem can be tackled
effectively, since, for example, phase correlation is able to recover translations when the
overlap between the two images is of the order 30-40% [5]. While the same applies to the
case of rotations only, the situation becomes rather problematic when (potentially large)
roto-translations are to be considered. In this case, the center of rotation is unknown
and windowing does not only result in loss of critical information but also attenuates
pixel values non-uniformly (with respect to the rotation center). The result is a dramatic
decrease in performance, as demonstrated in the following section.

On the other hand, it can be observed that the proposed scheme is based on gradient
edge maps and, therefore, discontinuities due to periodization appear only if very strong
edges exist close to the image boundaries. In practice, by selecting efficient differentia-
tion operators the boundary effect is greatly reduced and the method does not apply any
windowing to the input images.

From the above discussion it is evident that a key role to the robustness of the proposed
scheme plays the choice of appropriate operators to perform the differentiation in (5).
In our case, the operator should be robust to noise and able to reduce the border effect
significantly. Not surprisingly, experimentation suggested that the operator based on the
first derivative of a Gaussian [3] perfectly fits the particular application. For the 1D case,
the filter’s frequency response for standard deviation o = 0.5, 1,2 is shown in Fig. (2). As



o increases, more emphasis is put on the lower part of the Fourier spectrum and, therefore,
robustness to noise is enhanced; nevertheless, it is expected that smaller motions can be
handled.

Magnitude

0 2 EY
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Figure 2: The response of the ideal differentiator and the first derivative of a Gaussian
with standard deviation o =0.5, 1 and 2.

4 Results

To evaluate the performance of the proposed scheme two different experiments were car-
ried out using four representative images of size 512x512, shown in Fig. (3).
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Figure 3: The four images used. (a) “Lena”, (b) “Water”, (c) “Peppers”, (d) “Aerial”.

The first experiment is related to rotation estimation. Given each of the four images,
a set of pairs of test images of resolution 256x256 was created. Each pair /; , and Iy is
related by a roto-translation [t,,t,, 0]. With reference to the center of the orlgmal image,
I, 4, is obtained by cropping a 256x256 window centered at [ty,ty] = 15n[+ex T ey, n =
0, 17 ., 1, where e, and e, are the unit vectors of the x— and y— axis. Iy was obtained
by rotating the original image by 0° < 6 < 170° with step A@ = 10° and then cropping
the 256x256 central window. Overall, for a fixed n, four translated images were created.
Each of the translated images was registered with each rotated image. Depending on the
rotation angle, the overlap between the input images is in the range 90-100% for n = 0,
about 60% for n =4, 50% for n =5, 40-45% for n = 6 and finally about 35% for n =7
For each [ty,1y, 6], the corresponding images were corrupted by white Gaussian noise.
The signal-to-noise ratio (SNR) was set to 0 dB and each experiment was repeated 25
times. Figure 4 shows an example of a pair of misaligned noisy images considered in our
experiments.



Figure 4: An example of two unregistered noisy images (SNR=0 dB, [t,1,,0] =
[75,75,30]) considered in our experiments.

Rotation estimation was attempted using three methods: gradient cross-correlation
(GC), phase correlation (PC) [9] and the angular difference function (ADF) [5]. For the
proposed scheme, edge maps were extracted using the first derivative of a Gaussian with
standard deviation o = 1. For PC and ADF, to reduce border effects, the input images
were weighted by a 2D Gaussian Wg = e~ (07202 with o, = 0.4 which gave the best
results for both methods (the image domain is supposed to be [-1/2, 1/2]x[-1/2, 1/2]).
For each method, the mean value and standard deviation (std) of the registration absolute
error in degrees with respect to n for “Lena” and “Water” are shown in Fig. (5). The
registration accuracy achieved by the proposed scheme for all images is given in Table 1.

The robustness of the proposed scheme is evident. For “Lena”, rotations were ac-
curately estimated for overlapping regions up to 50% (n = 5) and with good precision
(mean = 0.02434, std = 2.5922) when the overlap is of the order of 40-45% (n = 6). To
this point, it should be emphasized that the size of overlap is rather indicative than rep-
resentative. The main assumption for the proposed algorithm to work is that overlapping
regions share a number of distinctive image features. Additionally, it cannot be expected
that the algorithm features robust performance when objects with strong edges are intro-
duced in the dissimilar parts of the two images. For example, notice that for “Peppers”
(Table 1), for n = 6, while the mean value of the orientation absolute error is relatively
small, the corresponding standard deviation is significant, which indicates that, in this
case, some rotation angles were estimated inconsistently. In any case, the dynamic range
of the algorithm should be defined according to the application. An application, where
the proposed framework appears to fit with promising results, is the registration of various
types of textured images as shown in Fig. (5) (¢) and (d). In general, textured images may
lack the existence of distinctive features, however, in many cases, some sort of orienta-
tion may be present which turns out to be independent of the relative translation (consider
for example a brick wall) and is efficiently captured by the proposed scheme. Promising
results were also obtained for “Aerial”.

The second experiment aims at evaluating the performance of GC and PC for trans-
lation estimation when rotation is recovered up to a certain accuracy. In particular, with
reference to the previous simulation, for a fixed rotation angle 6 = 45°, it is assumed that
rotation was estimated as 8 = 45° + 6, where 0, = 1,42, 3. After compensating for
0, the residual translation is estimated using GC and PC. Examples which illustrate the
performance of both methods, for “Lena” and |6;| = 2 and “Water” and |6 | = 3, are given
in Fig. (6). For “Water”, it can be seen that GC achieves relatively good performance up to
n =2 only. This is attributed to the large misalignment and the lack of distinctive features
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Figure 5: (a) Mean value and (b) std of the orientation error in degrees for “Lena”. (c)
Mean value and (d) std of the orientation error in degrees for “Water”. Diamond: GC,
Circle: PC, Asterisk: ADF.

[n ] “Lena” “Water” | “Peppers” | “Aerial”
0 | 0.0025 (0.0353) 0(0) 0.0106 (0.0719) 0(0)
11 0.0040 (0.0447) 0(0) 0.0187 (0.095) 0(0)
2 0.0055 (0.052) 0(0) 0.0297 (0.1186) 0(0)
3 0.0117 (0.0755) 0(0) 0.0489 (0.1501) 0(0)
4 | 0.0296 (0.1191) 0(0) 0.0769 (0.1921) 0(0)
5| 0.0549 (0.1666) | 0.0033 (0.0407) | 0.2444 (2.7826) | 0.0006 (0.0167)
6 | 0.02434 (2.5922) | 0.0111 (0.0737) | 0.9393 (6.2438) | 0.0039 (0.0441)
7| 2.4194 (10.078) | 0.0328 (0.1264) | 2.028 (8.9526) | 0.0202 (0.1052)

Table 1: Mean value (std) of the orientation error in degrees using GC.

in the particular image. Note however that the error induced by the rotation estimation
step is very small and misalignments of this order are unlikely to occur. In general, for all
images and |6, | considered, GC outperforms PC. For |6, = 1, it was found that the algo-
rithm achieves nearly one-pixel accuracy (worst case: mean = 0.6656, std =0.7059, n =7,
“Aerial”). For |0¢| = 2, the accuracy achieved by GC is given in Table 2. It can be seen
that, in most cases, at least a rough estimate of the translation is provided. For |6¢| = 3,
the mean value and std were both approximately increased by one pixel compared to the
case |0 | = 2, with the exception of “Water”, where the algorithm becomes unstable.
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Figure 6: (a) Mean value and (b) std of the translational error in pixels for “Lena” and
|6¢| = 2. (c) Mean value and (d) std of the translational error in pixels for “Water” and
|6¢| = 3. Diamond: GC, Circle: PC

1.0116 (0.9781)

0.9821 (3.7081)

1.0641 (0.7572)

1.9661 (0.8089)

1.1280 (1.0032)

3.7377 (19.272)

1.1657 (3.018)

[n ] “Lena” \ “Water” | “Peppers” | “Aerial” ‘
0 | 0.1395 (0.4801) 0(0) 1.2226 (0.5247) | 1.8818 (0.4460)
1 10.1786 (0.5367) | 0.02(0.1990) | 1.1804 (0.5759) | 1.7845 (0.6447)
2 | 0.3548 (0.7077) | 0.1271 (0.4836) | 1.1384 (0.6277) | 1.7347 (0.8109)
3105123 (0.7938) | 0.3905 (0.7035) | 1.0957 (0.6871) | 1.7951 (0.8140)
4 1 0.6996 (0.8687) | 0.5925 (0.7556) | 1.0701 (0.7231) | 1.8336 (0.7912)
5 [ 0.8702 (0.9378) | 0.7397 (0.7754) | 1.0572 (0.7477) | 1.8808 (0.7955)
6
7

2.0726 (0.8204)

Table 2: Mean value (std) of the translational error in pixels for |6;| = 2 using GC.

5 Conclusions

Summarizing, a frequency domain algorithm for motion estimation based on gradient
cross-correlation has been proposed. Experimentation suggested that, unlike other Fourier-
based approaches, the scheme is able to estimation rotations when relatively large roto-
translations and noise are to be considered. This is attributed to the good feature selectiv-
ity offered by the use of image gradients and the ability of the proposed scheme to perform
correlations without the need of image windowing. Additionally, it was found that, de-



pending on the magnitude of the orientation error, gradient cross-correlation is able to
provide at least a rough estimate of the residual translation. This could motivate an iter-
ative approach where rotations and translations are estimated and, then, the overlapping
regions between the two images are extracted and used to update the initial estimates.

The computational complexity of the proposed scheme is determined by the FFT op-
erations and the additional cost of converting the magnitude of the FT from Cartesian to
polar coordinates. If the polar FFT algorithm, recently proposed in [2], is used, then, the
overall complexity of the algorithm will be O(N?logN).
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