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Abstract

In this paper we show how online images can be automatically exploited
for scene visualization and reconstruction starting from a mere visual query
provided by the user. A visual query is used to retrieve images of a landmark
place using a visual search engine. These images are used to reconstruct ro-
bust 3–D features and camera poses in projective space. Novel views are then
rendered corresponding to a virtual camera flying smoothly through the pro-
jective space by triangulation of the projected points in the output view. We
introduce a method to fuse the rendered novel views from all input images at
each virtual view point by computing their intrinsic image and illuminations.
This approach allows us to remove the occlusions and maintain consistent
and controlled illumination throughout the rendered sequence. We demon-
strate the performance of our prototype system on two landmark structures.

1 Introduction
In this paper we show how a minimal amount of pictorial information about a landmark
can be enriched using online information to yield an explorable 3–D representation of the
landmark. The abundance of online information has dramatically changed the way mod-
ern technologies work. Recent advances in visual query-based search engines [2] enable
us to retrieve images from online resources based on their resemblance to the user pro-
vided visual query. Likewise, advanced computer vision systems have emerged that are
capable of exploiting the vast source of online information. One such system was intro-
duced by Hays and Efros [5] which uses online images to interactively remove undesirable
regions and fill them seamlessly with data from ranked similar images. Another example
of such applications is scene reconstruction from online photos of landmarks proposed by
Snavely et al. [9]. This system introduces a new fashion for navigation through a large set
of images of a site manually collected from the Internet in which the photos are arranged
and accessed based on their computed view points and added annotations.

We aim at taking these ideas further and investigate how, starting from a small visual
query associated to a place, the ensemble of online images of that site can be exploited to
visualize the queried scene. This idea is illustrated in Fig. 1. A visual query is defined in
the form of a distinctive image region selected from a picture of the landmark as shown
in the top left image in Fig. 1. The query is then passed to a visual search engine to obtain
a set of images of the site.
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The queried landmark is chosen to be a place of significant popularity among visitors
and photographers. Therefore, we expect to have a large number of photos of that place
available online. The retrieved images are then used to reconstruct a set of 3–D scene
points and measure the camera parameters for each input image. This reconstruction in
turn enables navigation through the scene and synthesis of novel views of the scene with
controlled illumination as shown at the bottom row of Fig. 1. This task is challenging
because we assume no constraints on the input views. The retrieved images are taken
using different cameras from scattered view points under different lighting conditions
and often suffer from presence of occlusions (e.g. cheerful tourists). Hence, robust and
innovative techniques are required to obtain a 3–D representation of the scene as well as
synthesized novel views which are temporally coherent and are free of occlusions and
varying illumination.

State-of-the-art multi-view reconstruction algorithms assume as input a set of cali-
brated images usually taken by the same camera. Different approaches based on Bayesian
inference [4], expectation maximization [10] and graph cuts and message passing energy
minimization [11, 14] have been used to minimize a global photo-consistency cost func-
tion with priors imposed to regularize the results. The priors are typically in the form of
visual hull or surface smoothness constraints. An alternative strategy was proposed by
Furukawa and Ponce [3] to gradually enforce local photometric as well as global visibil-
ity constraints. They showed how a sparse set of matched points can be used as seed to
match, expand and filter a dense cloud of points using the measured input views. In the
absence of calibration data and other constraints used in the above techniques, we pro-
ceed by reconstructing robust 3–D features and cameras in projective space, and therefore
avoid precise estimation of the internal parameters of the cameras which requires addi-
tional resources such as picture metadata and further priors [9].

Novel views are then rendered corresponding to a virtual camera flying smoothly
through the projective space by triangulation of the projected points in the output view.
Lhuillier and Quan [6] proposed joint view triangulation method to interpolate views
using a quasi-dense set of point matches. They introduce a greedy algorithm to match
constrained triangulations in two views based on connected component boundaries. This
method works well for two-view interpolation between narrow-baseline images. However
it is not straightforward to generalize it to multi-view joint triangulation. Furthermore, the
planar patch matching used in conjunction with joint view triangulation interpolations is
prone to error due to occluding objects in the scene as well as wide-baseline images.
Instead of optimizing a single snapshot for each virtual view given all the input data, we
adopt a simple triangulation-based method to create a novel view based on each measured
input view at each virtual camera location.

Furthermore, we fuse the rendered novel views from all input views at each virtual
view point by computing their so-called intrinsic image [12] and illuminations. This
approach allows us to remove the occlusions and insert consistent and controlled illumi-
nation throughout the rendered sequence. Illumination analysis and manipulation using
image of the same scene under variable illumination has been used in the context of fore-
ground layer recovery, removing shadows and reflections [1], as well as estimating intrin-
sic images [1, 8, 12]. To the best of our knowledge this is the first time that image light
decomposition has been applied to novel views based on images from different points of
view to compute illumination and remove occlusions.

Our contribution is therefore to show how a mere visual query provided by the user



Figure 1: What information can be obtained from a visual query. Top row: The user
provided query is shown in the top left image and is used to automatically retrieve images
of the relevant building using a visual search engine [2]. Second row: robust 3–D feature
and camera reconstruction is done in projective space. Here the projected 3–D features in
some input views and affine reconstruction of the 3–D points are shown. Third row: Input
views are used to render multiple novel views for each point of view in the projective
space. These novel views have occluding objects and varying illuminations. Bottom row:
Novel views based on different input views are fused together to remove occlusion and
artifacts and render the scene with controlled illumination.

can be used to generate a visual representation of the scene corresponding to the query.
This space can be explored through virtual views which are rendered without occluding
elements present in the retrieved views. Furthermore, we maintain consistent and con-
trolled illumination across the entire virtual views by computing the intrinsic image and
light in the rendered views.

The remainder of this paper is organized as follows. Section 2 discusses the details of
different steps of our prototype system. Results and analysis are presented in section 3.
Finally we summarize the merits and limitations or our system in section 4.



2 Visual Scene Representation
Once a set of input images is retrieved by the visual query search engine, the highest
ranking ones are selected and the resulting set is denoted by I. We refer to the ith image
in I by Ii. The first task is then to measure the cameras used to capture those images
and as well as a set of robust 3–D features in the scene. In this section we explain how
wide-base line feature matching can be used to reconstruct the features and cameras. This
reconstruction is then used to render virtual views based on input views which are then
fused to obtain a coherent and occlusion free fly-trough sequence in the projective space.
These steps are explained in detail below.

2.1 Projective Reconstruction
Since we make no assumptions about the internal parameters of the images in I, we recon-
struct the scene in projective space. Each camera Pi corresponding to image Ii is therefore
represented by a 3× 4 matrix of rank 3 with 11 degrees of freedom and the task is to
accurately estimate Pi for all Ii ∈ I as well a set of triangulated features.

We use SIFT features [7] due to their robustness to scale and view point variance.
For all image pairs Ii and I j in I, SIFT features, fi ∈ Ii are matched against SIFT features
f j ∈ I j to yield an initial set of matches m0

i j. These matched features contain outliers and
must be further processed before proceeding with the scene reconstruction. We robustly
compute a fundamental matrix for each image pair using the initial set of feature matches.
The estimated fundamental matrix is then used to filter out the outliers in the set m0

i j and
obtain a refined set of matches denoted by mi j.

Given the set of refined robust matches in all image pairs, we build feature tracks
across all images in I. Consistency is enforced in the set of tracks by eliminating tracks
that contain conflicting matches across different images. These tracks are then used to
perform robust bundle adjustment to yield a set of accurate 3–D features X and camera
matrices Pi for all images in I. The second row of Fig. 1 shows the projection of 3–D
features X using the estimated camera matrices Pi in input views and their 3–D affine
visualization.

2.2 Novel View Synthesis
Virtual cameras can be defined in a number of ways in the projective space. In order to
compute a virtual camera sequence between all input views we directly interpolate be-
tween projection matrices Pi to avoid explicit decomposition of the matrices into rotation
and translation in projective space. The projectively interpolated virtual camera positions
are shown in Fig. 2 in affine space for better viewing. It can be seen that the projective
sampling corresponds to an intuitive camera interpolation in the affine space and that all
the virtual cameras point at the scene. The sequence rendered from these cameras gives a
smooth transition from one input frame to the next as can be seen in section 3.

Given the virtual camera matrices Q and the measured 3–D points X and input views
I we can render virtual snapshots I′q. While multiple depth maps and global optimization
techniques can be used to compute each novel view as a global minimum of a high-
dimensional energy function, these methods are computationally expensive and require
specialized optimization algorithms to handle the involved MRF energy function [13].



Figure 2: Affine 3–D visualization of the computed projective scene. Input cameras are
marked by the yellow circles. The red circles show virtual cameras and their line of sight.
The camera matrices are interpolated in projective space.

(a) (b) (c)

Figure 3: Novel view synthesis is done by warping the corresponding triangles in input
view Ii, shown in (a), to the triangulated output view, (b). The rendered result, Iq

i is shown
in (c).

Instead we adopt a simple triangulation-based method for rendering novel views which,
combined with our fusion technique, can generate desirable intermediate novel views.
Instead of optimizing a single snapshot for each virtual view given all the input data, we
create a novel view based on each measured input view Ii at each virtual camera location
to obtain a set of views I′q = {Iq

i = Fq
i (Ii)|Ii ∈ I}. The function Fq

i transforms input
view Ii to the virtual view Iq

i . This function is defined through Delaunay triangulation
of the projection of reconstructed 3–D points in the virtual camera view. The texture
map for each triangle ∆m

q in the virtual view is obtained by warping the corresponding
triangle ∆m

i in input view Ii such that ∆m
q = Wm(∆m

i ) as illustrated in Fig. 3. The resulting
set I′q consists of the views rendered from the same virtual point of view but from each
input view independently. Therefore, the occlusions and the particular illumination of
each input view is directly transformed into the corresponding virtual view Iq

i . Moreover,
artifacts due to triangulation of non visible 3–D points in Ii are also introduced in Iq

i .
Another step is therefore necessary to deal with these problems.

2.3 Novel View Fusion
In this section we show how the rendered views I′q can be fused to reduce the artifacts
and occlusions and maintain consistent illumination. I′q contains a set of N (number of
input views) intensity images which we refer to as I(x,y, t), t = 1, . . . ,N, rendered from
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Figure 4: Input views are used to obtain a set of rendered novel views I′q from the same
virtual camera q. These novel views are decomposed into a reflectance image (a) and a
set of illumination images l(x,y, t), one of which is shown in (b). Note that the standing
person is removed from the reflectance image and but appears in the illumination image.
(c) Median filtering of the illumination images removes the artifacts. The filtered light
can then be added to the reflectance image to re-light the resulting novel view (d).

the same point of view under varying light conditions. This set can be decomposed into a
single reflectance image R(x,y) and the corresponding illumination images L(x,y, t). The
logarithm of these images, denoted by lower case letters, are related by:

i(x,y, t) = r(x,y) + l(x,y, t) t = 1, . . . ,N. (1)

Weiss [12] showed that the maximum likelihood (ML) estimate of the gradient of the
reflectance image is given by the median of the gradient input images i(x,y, t). Agrawal
et al. [1] further extended this approach to non Lambertian scenes by first estimating
the reflectance image r as proposed by Weiss and then removing scene texture edges from
illumination images efficiently as follows. For each image i, a cross projection tensor Dr is
estimated using r and i. Dr is used to transform the gradient field ∇i. This transformation
removes all edges in i which are present in r. The illumination images l(x,y, t) are then
computed by 2–D integration of the modified gradient field ∇l(x,y, t) = Dr ∇i(x,y, t) for
all t. We use this approach to compute at each novel view point a reflectance image and
a set of illuminations images corresponding to the input views rendered from the virtual
camera view through our triangulation method.

A direct benefit of light decomposition approach applied to novel view synthesis is
that the resulting reflectance novel view is robust to rendering artifacts and occlusion as
shown in Fig 4-a. This is thanks to the median filtering of the gradient images. However,
the occluding objects in the input views and the missing areas due to triangulation will
still be present in some of the illumination images, as shown in Fig. 4-b, but they can be
effectively removed by filtering the illumination images. A simple median filter of the
illumination images is sufficient to create a photo-realistic light image that can be added
to the reflectance image to re-light the novel view as shown in Fig. 4-d. The computed
illumination images can also be used to interpolate lights to create artificial shadows and
illuminations in the process of rendering a novel view sequence without explicitly simu-
lating a 3–D light source and computing all surface normals. This is illustrated in the next
section.
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Figure 5: Illumination in novel views based on input views. (a) and (b) are the original
input view segments. (c) Median novel view. Note the ghost effects of the bars as well
as the imprinted shadow in the archway. (d) Fused novel view using our method with the
shadows and the ghost effects removed. The second row shows controlled illumination,
see text for details. Note the gradual dissolve of the added shadow in the archway.

3 Experimental Results
In this section we demonstrate the performance of our prototype system on reconstruction
and visualization of a landmark structure. The query shown in the top left image of
Fig. 1 is passed to a functional visual search engine [2] that operates on online photo
sharing websites such as Flickr. We keep the 7 top ranking retrieved images. The detected
SIFT matches between all pairs of images are used to robustly estimate the fundamental
matrices using RANSAC. The consistent tracks of all inlier matches across the input
views are then used for bundle adjustment. We use a publicly available projective bundle
adjustment code1 to measure the projective structure and cameras.

Virtual camera trajectory is created by interpolation of 20 camera matrices between
consecutive input cameras. The projections of the reconstructed 3–D points in each novel
view are triangulated and used to re-render the input images. This yields a set of novel
views, I′q, for each virtual camera as shown in the third row of Fig. 1. OpenGL imple-
mentation of the rendering algorithm is fast and the rendering time is in the order of a
fraction of a second. The set of rendered views I′q corresponding to virtual camera Q is
then decomposed into light and reflectance images. Matlab implementation of the cross
projection tensor transformation and the 2–D integration of the gradient field from [1] was
used to compute re-lit images. These operations take 4 minutes per frame on a 3.0GHz
Pentium 4.

Fig. 5 illustrates the effects of input illumination in novel views. Fig. 5-a and b are the
original input view segments, I1 and I2. Fig. 5-c shows a novel view rendered by taking
the median of intensity of all novel views, I′q, at the virtual camera location. Undesirable

1http://cmp.felk.cvut.cz/∼svoboda/SelfCal/
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Figure 6: Novel views from various virtual camera positions. (a) and (b) are generated
by adding the illumination computed from an input view to the reflectance image, this
illumination contains shadows. (c) and (d) are the same generated novel views using the
median of the input view illuminations to remove shadows.

artifacts such as ghost effects due to the bars visible in one input view as well as the
imprinted shadow in the archway can be observed. Fig. 5-d shows the fused novel view
using the median of the illumination images, lq(x,y, t) as proposed in this paper. Shadows
and ghost effects are removed using this technique. The second row of Fig. 5 shows how
illumination images corresponding to re-rendered input views Iq

1 and Iq
2 can be used to

interpolate and simulate new illuminations. The generated illumination images are then
added to the reflectance image rq(x,y) to obtain the final novel view.

Finally Fig. 6 shows some virtual snapshots at various locations along the virtual
camera trajectory. Two types of illuminations have been used to re-light the computed
reflectance image for each camera. The top row shows the results when using the illumi-
nation image corresponding to the re-rendered input image Iq

1 . The second row shows the
re-lit images using the median of the illumination images of the set Iq.

In addition to novel view generation, the projective space can be upgraded to affine
or metric by some user interaction to accommodate 3–D exploration of the scene. This
procedure involves locating images of the plane at infinity (for affine reconstruction) or
the absolute conic (for metric reconstruction) in a pair of images and reconstructing the
vanishing points. The reconstructed affine 3–D features are shown in the second row of
Fig. 1 and the textured map scene is shown in Fig. 2.

As a second reconstruction example, we used 20 images of Christ Church College in
Oxford by selecting the top 20 results of the visual query search engine [2]. The projective
structure and cameras were computed using robust bundle adjustment on SIFT features.
We kept 9 camera matrices for which the reprojection error of the 3–D features were
accurate. The top row of Fig. 7 shows the triangulated reprojection of the 3–D points in
4 of the 9 input images. Examples of the rendered novel views are shown in Fig. 7-(a-c).
The set of 9 rendered novel views (from the same point of view) are then fused to obtain
Fig. 7-d. Note that the rendered novel view in Fig. 7-a suffers from gross errors due to
triangulation of erroneous 3–D points which project incorrectly into the corresponding
input view. The triangulation error due to those points is negligible in other input views
and therefore the final fused view (Fig. 7-d) does not suffer from those artifacts thanks to
the decomposition and filtering scheme involved in the fusion algorithm.
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Figure 7: Reconstruction of the Christ Church college in Oxford from retrieved online
photos. First row: some of the measure views and projection of measured 3–D points.
Second row: (a)-(c) three rendered views from input views. view (a) contains artifacts
due to projection of some errorneous 3–D points. (d) shows the fused view using 9 input
images, note that the error in the rendered view (a) is corrected in the fused view.

4 Conclusion
We have proposed a novel methodology to use various computer vision techniques in an
innovative way to build a prototype system that is capable of 3–D visualization of a scene
based on online images starting from a small visual query associated to that site. Our
approach can easily be integrated into advanced 3–D visualization technologies such as
Microsoft Live Labs’ Photosynth [9], where they currently use an offline image dataset of
a landmark as well as estimations of the internal camera parameters for the reconstruction.
Moreover, in their work the transition between images in 3–D space is based on simple
view morphing.

In our approach, input images are automatically retrieved using visual search engines.
In the absence of calibration data and other priors about the retrieved images, we pro-
ceed by reconstructing robust 3–D features and cameras in projective space using bundle
adjustment. The scene can then be explored through virtual views generated in the pro-
jective space. Furthermore, the projective space can be upgraded by some user interaction
to accommodate 3–D visualization of the scene in affine or metric space. The structure
and camera matrices can be further exploited to obtain a quasi-dense cloud of points in
the scene. A dense set of 3–D points improves the novel view synthesis results and can
be considered as future improvements to the system.

Optimizing a single snapshot for each virtual view given all the input data is not feasi-
ble due the scattered data, occlusions and varying illumination. Instead, we have proposed
a simple triangulation-based method to create novel views corresponding to virtual cam-
era parameters based on the measured input images. We fuse the re-rendered views at each
virtual camera by computing their intrinsic image and the corresponding illumination im-
ages. This technique effectively removes the occluding elements present in the retrieved
views. Our fusion technique elegantly decouples the problem of occlusion handling from
rendering, furthermore, it accommodates consistent and controlled illumination across
the sequence of virtual views. The fusion step also increases robustness to outliers in the



input views retrieved by the visual search engine. This will be further investigated in our
future work.
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