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Abstract

The strength of gait, compared to other biometrics, is that it does not require
cooperative subjects. Previoius gait recognition approaches were evaluated
using a gallery set consisting of gait sequences of people under similar co-
variate conditions (i.e. clothing, surface, carrying, and view conditions). This
evaluation procedure, however, implies that the gait data are collected in a
cooperative manner so that the covariate conditions are known a priori. In
this work, the performance of state of the art gait recognition approaches are
evaluated without the assumption on cooperative subjects, i.e. the gallery set
consists of a mixture of gait sequences under different unknown covariate
conditions. The results show that the performance of the existing approaches
drop drastically under this more realistic experimental setup. We argue that
selecting the most relevant gait features that are invariant to changes in gait
covariate conditions is the key to develop a gait recognition system that works
without subject cooperation. To that end, we propose a novel gait recognition
approach, which performs automatic feature selection on each pair gallery
and probe gait sequences, and seamlessly integrates feature selection with an
Adaptive Component and Discriminant Analysis (ACDA) for fast recogni-
tion. Experiments are carried out to demonstrate that the proposed approach
significantly outperforms the existing techniques.

1 Introduction

Gait is a behavioral biometric that measures the way people walk. Compared to physio-
logical biometrics such as fingerprint, iris, and face, the advantage of gait is that it does not
require subject cooperation and can operate without interrupting or interfering with the
subject’s activity. This makes gait ideal for situations where direct contact or cooperation
with the subject is not possible (e.g. medium to long distance security and surveillance
applications in public space).

Gait is sensitive to various covariate conditions, which are circumstantial and physi-
cal conditions that can affect either gait itself or the extracted gait features. Example of
these conditions include clothing, surface, carrying condition (backpack, briefcase, hand-
bag etc), view angle, speed, and shoe-wear type to name a few. The existing works on
gait recognition use a gallery set consisting of gait sequences of people under similar co-
variate conditions and evaluate the performance of the proposed methods on probe sets
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of possibly different covariate conditions [5, 12, 11, 1, 6, 3, 10]. They therefore make the
implicit assumption that the gallery data are collected in a cooperative manner so that the
covariate conditions are known a priori. It is well known that given cooperative subjects,
gait cannot compete with physiological biometrics in terms of recognition accuracy. It
is therefore necessary and crucial to evaluate the performance of the existing gait recog-
nition approaches without the assumption on cooperative subjects, i.e. the gallery set is
composed of a mixture of gait sequences under different unknown covariate conditions.
To the best of our knowledge, none of the existing work has done such an evaluation.

In this work, we evaluate the performance of state of the art gait recognition ap-
proaches under the aforementioned realistic experimental setup. The results show that
the existing approaches yield very unsatisfactory performance (a nearly 4-fold decrease
in recognition rate in some experiments compared to the result obtained using gallery
sequences of similar covariate conditions). We argue that the main reason is that the ex-
isting approaches rely on both static appearance features and dynamic gait features for
person identification, i.e. the identification is not achieved using gait alone [7, 8]. More
specifically, most approaches represent gait using features extracted from silhouettes. By
extracting silhouettes, a large part of physical appearance features have been removed
from the image representation of human. Nevertheless, a silhouette still contains infor-
mation about the shape of human body that has nothing to do with gait (e.g. contour
of head and upper body). Although recent studies suggest that static shape information
is more important than kinematics for most of the silhouette-based gait recognition ap-
proaches [7, 8], including static appearance features in gait representation also makes the
existing approaches vulnerable to the changes of covariate conditions. To overcome the
problem, it is crucial to select the most relevant gait features that reflect the unique char-
acteristics of gait as a behavioral biometric, and importantly are invariant to appearance
variations caused by changes of covariate conditions.

To that end, we propose a novel gait feature selection method to automatically select
covariate condition invariant features for gait recognition. Gait Energy Image (GEI) is
selected for gait representation, which is a spatio-temporal gait representation constructed
using silhouettes [1]. GEI represents a gait sequence using a single image; it is thus a
compact representation which is an ideal starting point for feature selection. In spite of
its compactness, it has been demonstrated that GEI is less sensitive to noise and able to
achieve highly competitive results compared to alternative representations [1]. Since in
a realistic experimental setup, the covariate conditions for both the gallery and probe sets
are unknown, we propose to select a set of features that are unique to each pair of gallery
and probe sequences.

After feature selection, the gallery and probe GEIs can be used as templates and the
gait recognition problem can be solved by measuring the distance between the templates
directly. However, direct template matching has been shown to be sensitive to noise and
small silhouette distortions by previous studies [1, 4]. To overcome this problem, statis-
tical feature learning based on subspace Component and Discriminant Analysis (CDA)
can be employed to further reduce the feature dimensionality [2]. Nevertheless, since
a different set of features are selected for different pairs of gallery and probe GEIs, a
conventional CDA based approach is computationally costly because different subspaces
have to be constructed given each GEI pair. This problem is addressed by a novel Adap-
tive Component and Discriminant Analysis (ACDA) proposed in this work. Instead of
computing a different subspace for a different pair of gallery and probe GEIs, ACDA



adapts a base subspace towards each gallery and probe GEI pair according to the selected
features. Experiments are carried out to demonstrate that our feature selection based gait
recognition method significantly outperforms previous approaches, especially when the
gallery set is composed of sequences under variable unknown gait covariate conditions.

In summary, this work has the following main contributions: 1) For the first time,
gait recognition approaches are evaluated without assuming subject cooperation; 2) a
novel feature selection method is proposed for gait representation; 3) a novel Adaptive
Component and Discriminant Analysis (ACDA) is developed for fast gait recognition.

2 Feature Selection on Gait Energy Image

2.1 Gait Representation

Given a human walking sequence, a human silhouette is extracted from each frame using
the method in [6]. After applying size normalization and horizontal alignment to each
extracted silhouette image, gait cycles are segmented by estimating gait frequency using
a maximum entropy estimation technique presented in [6]. Gait Energy Image (GEI) is
then computed as

G(x,y) =
T

∑
t=1

I(x,y, t), (1)

whereT is the number of frames in a complete gait cycle,x andy are the image coordi-
nates, andt is the frame number in the gait cycle.

(a) Normal (b) Carrying a bag (c) Wearing a coat

Figure 1: Gait Energy Images of a person under different carrying and clothing conditions.

Examples of GEIs are shown in Fig. 1. Note that pixels with high intensity values in
a GEI correspond to body parts that move little during a walking cycle (e.g. head, torso),
while pixels with low intensity values correspond to body parts that move constantly (e.g.
lower parts of legs and arms). The former mainly contain information about body shape
and stance, whilst the latter tells us more about how people move during walking. We
call the former static areas of a GEI and the latter dynamic areas of a GEI. The dynamic
areas are invariant to human appearance changes; they seem to be the most informative
part of the GEI representation for human identification. The static areas of a GEI also
contain useful information for identification (e.g. one’s hair style). However, since they
mainly contain body shape information, they are sensitive to changes in various covariate
conditions. For instance, in Fig. 1, three GEIs are computed from three sequences of the
same person walking under different conditions. The dynamic areas of the GEI suggest
that they are the same person but the static areas suggest otherwise. Based on this obser-
vation, an automatic feature selection method is developed to select the most informative



gait features from a GEI. These features are mainly from the dynamic areas of a GEI and
are thus in general invariant to changes in covariate conditions.

2.2 Feature Selection

A binary feature selection maskMG(x,y) is first generated for a given GEIG(x,y) (either
from the gallery or the probe set). As discussed earlier, the intensity values of a GEI can
be used to infer the dynamic and static features in the GEI. Apart from this, we can make
use of another important observation, that is, more useful gait information is embedded in
the bottom part of a GEI than in the top part. Based on this observation, we divideG(x,y)
vertically into two partsGU (x,y) andGL(x,y) representing the upper two third and the
lower one third of the GEI respectively. A base maskMB(x,y) is then generated as

MB(x,y) =
{

0, ∀(x,y) where x> 1
3H

1, Otherwise
(2)

whereH is the height of the GEI in pixels. The feature selection maskMG(x,y) is gener-
ated fromMB(x,y) as

MG(x,y) =

 1, if GU (x,y) < θ1

0, if GL(x,y) > θ2

MB(x,y), Otherwise
(3)

whereθ1 andθ2 are two pre-set thresholds and we haveθ2 ≈ 2θ1.
Suppose the gallery set containsN GEIs belonging toC classes (subjects). For the

ith gallery GEI, we generate a feature selection maskMi
G(x,y); Similarly M j

G(x,y) is
obtained for thejth probe GEI. Since different set of features are selected for the two
GEIs, to compare the similarity between them the features deemed as relevant by both
masks will be used. This is achieved by generating a new mask

Mi j
G(x,y) = Mi

G(x,y)&& M j
G(x,y) (4)

where && is the binary ‘AND’ operator.

(a) (b) (c) (d) (e)

Figure 2: Example of feature selection for a pair of gallery and probe GEIs. (a) gallery
GEI; (b) probe GEI; (c) feature selection maskMi j

G(x,y); (d) gallery GEI withMi j
G(x,y)

applied; (e) probe GEI withMi j
G(x,y) applied.

Fig. 2 shows an example of applying our feature selection method to a pair of gallery
and probe GEIs under different covariate conditions. It is evident that after applying the
feature selection mask generated using both GEIs, the effect of the changes in covariate
conditions in the gallery and probe sequences is alleviated effectively.



3 Adaptive Component and Discriminant Analysis

After applying a feature selection maskMi j
G(x,y) to each pair of gallery and probe GEIs,

gait recognition can be performed by matching a probe GEI to the gallery GEI that has the
minimal distance between them. However, direct template matching has been shown to
be sensitive to noise and small silhouette distortions [1, 4]. This is because the dimension-
ality of the GEI feature space is high even after feature selection (typically in the order of
thousands). To overcome this problem, subspace Component and Discriminant Analysis
(CDA) based on Principal Component Analysis (PCA) and Multiple Discriminant Analy-
sis (MDA) can be adopted which seeks to project the original features to a subspace of
lower dimensionality so that the best data representation and class separability can be
achieved simultaneously [2].

Suppose we haveN d-dimensional gallery GEI templates{x1, ...,xn, ...,xN} belonging
to C different classes (individuals), where each template is a column vector obtained by
concatenating the rows of the corresponding GEI. To compute the distance between the
ith gallery and thejth probe GEI,Mi j

G(x,y) is applied to each gallery GEI, which gives us

a new set of template{xi j
1 , ...,xi j

n , ...,xi j
N} of dimensiondi j . PCA is an orthogonal linear

transformation that transform the data to a subspace of dimensionalityd̃i j (with d̃i j < di j ).
The PCA subspace keeps the greatest variances by any projection of the data so that the
reconstruction error defined below is minimized:

Jd̃i j =
N

∑
n=1

∥∥∥∥∥
(

m+
d̃i j

∑
k=1

anke
i j
k

)
−xi j

n

∥∥∥∥∥
2

(5)

wherem is the mean of the data,{ei j
1 ,ei j

2 , ...,ei j

d̃i j
} are a set of orthogonal unit vectors

representing the new coordinate system of the subspace,ank is the projection of thenth
data toei j

k . Jd̃i j is minimised when{ei j
1 ,ei j

2 , ...,ei j
di j } are thed̃i j eigenvectors of the data

covariance matrix with the largest eigenvalues (in decreasing order). Now the gallery
templatexi j

n is represented as ãdi j -dimensional feature vectoryi j
n and we have

yi j
n = Mi j

pcax
i j
n = [ei j

1 , ...,ei j

d̃i j
]Txi j

n . (6)

PCA is followed by MDA which aims to find a subspace where data from different
classes are best separated in a least square sense. Different from PCA, MDA is a su-
pervised learning method which requires the gallery data to be labeled into classes. The
MDA transformation matrix,Wi j maximizes

J(Wi j ) =
|Wi j T

Si j
BWi j |

|Wi j TSi j
WWi j |

whereSi j
B is the between-class scatter matrix andSi j

W the within-class scatter matrix of
the gallery data in the PCA subspace{yi j

1 , ...,yi j
n , ...,yi j

N}. J(Wi j ) is maximized by setting
the columns ofWi j to the generalized eigenvectors that correspond to theC−1 nonzero
eigenvalues in

Si j
Bwi j

k = λ
j

i Si j
Wwi j

k



wherewi j
k is thekth column ofWi j andC is the number of classes in the gallery data.

Denoting these generalised eigenvectors as{vi j
1 ,vi j

2 , ...,vi j
C−1}, a gallery template is repre-

sented in the MDA subspace as:

zi j
n = Mi j

mday
i j
n = [vi j

1 , ...,vi j
C−1]

Tyi j
n . (7)

Note that the choice of̃di j is affected by the dimensionality of the MDA subspace, i.e.
C− 1. In particular,Si j

W becomes singular wheñdi j < C or d̃i j � C. We therefore set
d̃i j = 2C in this paper.

Now after three steps of dimensionality reduction (feature selection usingMi j
G(x,y),

PCA, and MDA), both the gallery and probe GEI feature vectors are represented in a
C− 1 dimensional subspace. This dimensionality reduction process is computationally
expensive mainly due to the PCA step. This is because for each new gallery and probe
GEI pair, a new maskMi j

G(x,y) is generated and we need to re-do the PCA which in-
volves eigen-decomposition of aN×N matrix. To make our approach more computation-
ally effecient, we develop an Adaptive Component and Discriminant Analysis (ACDA).
More specifically, instead of applying eachMi j

G(x,y) to the gallery templates and re-do

the PCA on{xi j
1 , ...,xi j

n , ...,xi j
N}, we compute PCA only once for the original gallery tem-

plates{x1, ...,xn, ...,xN}, which results in a base PCA subspace. We then adapt the base
PCA subspace towards each gallery and probe GEI pair by applyingMi j

G(x,y) directly to
the base principal components. Specifically, let{e1,e2, ...,ed̃} be the base components,
each component can be treated as an eigenGEI, similar to eigenface for face recognition.
The adapted components{ui j

1 ,ui j
2 , ...,ui j

d̃
} are then obtained by applyingMi j

G(x,y) to the
eigenGEIs. Now Eqn. (6) can be re-written as

yi j
n = Mi j

pcax
i j
n = [ui j

1 , ...,ui j

d̃i j
]Txi j

n . (8)

The MDA step that follows will remain unchanged (see Eqn. (7)).
In our Adaptive Component and Discriminant Analysis (ACDA) we approximate

{ei j
1 ,ei j

2 , ...,ei j
di j } using{ui j

1 ,ui j
2 , ...,ui j

d̃
} in order to reduce the computational cost. What

price we have to pay for this improvement in computational efficiency will depend on
the accuracy of the approximation. Intuitively, applying a binary maskMi j

G(x,y) to the

gallery data collapses some of the original coordinate axes.{ei j
1 ,ei j

2 , ...,ei j
di j } as the sub-

space expressed in the original coordinate system should also have the corresponding axes
collapsed, which is exactly how{ui j

1 ,ui j
2 , ...,ui j

d̃
} are generated. Theoretically, it can be

readily proved that the projection of{xi j
1 , ...,xi j

n , ...,xi j
N} to {ui j

1 ,ui j
2 , ...,ui j

d̃
} will have an

identical diagonalised covariance matrix as their projection on{ei j
1 ,ei j

2 , ...,ei j
di j }. More im-

portantly, we demonstrate through experiments in the next section that the approximation
is extremely accurate in practice.

4 Experiments

Dataset –The CASIA Gait Database [9] was used for evaluating the performance of
the proposed approach. The database comprises of 124 subjects. For each subject there
are 10 walking sequences consisting of 6 normal walking sequences (Set A), 2 carrying-
bag sequences (Set B) and 2 wearing-coat sequences (Set C). Each sequence contains



multiple gait cycles resulting in multiple GEIs. The original image size of the database is
320x240. After size normalization, the size of the GEIs became 128x88 (i.e. the original
feature space has a dimensionality of 11264). A sample GEI from each set is shown
in Fig. 1. The threshold values ofθ1 = 127,θ2 = 230, were used in our experiments.
Two experiments were carried out in this study. In the first experiments, the gallery set
contains sequences of people walking under similar covariate conditions, i.e. the same
experimental setup as the existing work. In the second experiment, the gallery set is
composed of a mixture of gait sequences collected under different unknown covariate
conditions. This is to evalute the performance of the proposed approach and existing
approaches without assuming subject cooperation.

Test Set TM CDA M j
G+CDA M j

G+ACDA Mi j
G(x,y)+ACDA

A2 97.6% 99.4% 100% 99.4% 100%
B 52.0% 60.2% 84.5% 83.6% 91.0%
C 32.7% 22.0% 65.1% 64.0% 80.6%

Table 1: Comparing different approaches using a gallery set consisting of sequences under
similar covariate conditions (without carrying a bag or wearing a coat). TM–direct GEI
template matching without feature selection and CDA [9]; CDA: method in [1] based on
CDA without feature selection;M j

G+CDA: Feature selection mask generated only from

the probe GEI and the conventional CDA;M j
G+ACDA: Feature selection mask generated

only from the probe GEI and ACDA;Mi j
G(x,y)+ACDA: Feature Selection mask generated

from each gallery probe GEI pair.

Gallery sequences under similar covariate conditions–The gallery set used for the first
experiment consists of the first 4 sequences of each subject in Set A (Set A1). The probe
set is the rest of the sequences in Set A (Set A2), Set B and Set C. The performance
was measured using recognition rates and is presented in Table 1. Table 1 also lists the
results published in [9] which were obtained using direct template matching on the same
database and the approach in [1] which is based on the standard CDA without our feature
selection methods. The approach in [1] is widely regarded as one of best gait recognition
approach and therefore representative of the state of the art. It can be seen that direct
template matching gives the worst results. CDA based approach improves on template
matching but there is still much room for improvement. Table 1 shows that our approach
significantly improves the results for all three probe sets. The improvement is particularly
substantial for the probe set with a different clothing condition (Set C), on which poor
results were obtained without feature selection.

We also compare the results with a simpler version of the feature selection method.
Specifically, we generate a feature selection mask using Eqn. (3) for each probe GEI and
apply it to all gallery GEIs. Table 1 shows that using the mask generate from the probe
GEI only, the result is much better compared to those of previous approaches without
feature selection, albeit it is slightly worse than the result obtained using a mask generated
for each gallery-test GEI pair.

Table 1 also lists the results with feature selection using the probe mask and CDA.
It can be seen that our Adaptive Component and Discriminant Analysis (ACDA) method
achieves almost identical results as the computationally much more expensive CDA ap-



(a) (b) (c)

Figure 3: (a): A GEI with Mi j
G(x,y) applied; (b) The reconstructed GEI using

{ei j
1 ,ei j

2 , ...,ei j
di j }; (c) The reconstructed GEI using{ui j

1 ,ui j
2 , ...,ui j

d̃
}. The root-mean-square

errors, which areJd̃i j (see Eqn. (5)) normalized by the image size, was 0.0031 for (b) and
0.0060 for (c).

proach. This suggests that our approximation of{ei j
1 ,ei j

2 , ...,ei j
di j } using{ui j

1 ,ui j
2 , ...,ui j

d̃
}

is accurate. Fig. 3(b) and (c) show examples of reconstructed GEIs using{ei j
1 ,ei j

2 , ...,ei j
di j }

and{ui j
1 ,ui j

2 , ...,ui j
d̃
} respectively. Both of them gave extremely small reconstruction er-

rors.

(a) Gallery GEI (b) Probe GEI

(c) M j
G (d) M j

G applied to gallery (e)M j
G applied to probe

(f) Mi j
G (g) Mi j

G applied to gallery (h)Mi j
G applied to probe

Figure 4: Comparing the feature selection maskM j
G generated using probe GEI only, and

Mi j
G generated using both the gallery and probe GEIs.



Gallery sequences under different covariate conditions–In this experiment the gallery
set includes a mixture of normal, carrying bag, and wearing coat sequences. More specif-
ically, we selected the first one third of the sequences from Set C, the second one third
from Set B and the last from Set A. The probe set for the mixed gallery set is the Set
A2, Set B2 which consists of Set B minus one third of Set B included in the gallery set
and Set C2 which is Set C minus one third of Set C included in the gallery set. This
gives us a challenging set of experiment data closely representing the condition for gait
recognition with uncooperative subjects. The experimental results are listed in Tables 2.
The results indicate a drastic degradation in performance for the CDA based method with-
out feature selection and the feature selection method based on the probe GEI only. In
comparison, our approach achieves much better result, especially for the probe sets with
different carrying and clothing covariate conditions. This result suggests that under such
a realistic experimental setup, feature selection based on each pair of gallery and probe
gait sequences is critical for selecting the relevant gait features. This is evident from an
example shown in Fig. 4. It shows that after applying the mask generated using both
the gallery and probe GEIs, the gallery and probe sequences can be correctly matched,
whilst the mask generated using the probe sequence alone cannot deal with the variations
in GEIs caused by changes in covariate conditions resulting in an incorrect match.

Test Set CDA M j
G+ACDA Mi j

G(x,y)+ACDA

A2 48.1% 50.0% 62.73%
B2 31.9% 36.1% 54.17%
C2 9.7% 27.7% 44.44%

Table 2: Comparing different approaches using a gallery set consisting of sequences under
different covariate conditions.

5 Conclusions

We have investigated the performance of state-of-the-art gait recognition approaches un-
der a realistic experimental setup where no subject cooperation is required. Our exper-
imental results suggest that the existing approaches are unable to cope with changes in
gait covariate conditions in a gallery set, therefore are unsuitable for a truly uncooper-
ative person identification task. To overcome this problem, we proposed a novel gait
recognition approach, which performs feature selection on each pair of gallery and probe
gait sequence, and seamlessly integrate feature selection with an Adaptive Component
and Discriminant Analysis (ACDA) for fast recognition. Experiments are carried out to
demonstrate that the proposed approach significantly outperforms the existing techniques.
It is worth pointing out that the proposed feature selection method is designed mainly for
mitigating the effect of changes in covariate conditions that affect gait feature extraction
rather than gait itself. Our ongoing work includes further extending the proposed feature
selection methods to deal with a wider range of covariate conditions that can affect gait
including injury, mood, shoe-wear type, and elapsed time.
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